期刊文献+
共找到531篇文章
< 1 2 27 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
A method for extracting human gait series from accelerometer signals based on the ensemble empirical mode decomposition 被引量:1
2
作者 符懋敬 庄建军 +3 位作者 侯凤贞 展庆波 邵毅 宁新宝 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期592-601,共10页
In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose th... In this paper, the ensemble empirical mode decomposition (EEMD) is applied to analyse accelerometer signals collected during normal human walking. First, the self-adaptive feature of EEMD is utilised to decompose the ac- celerometer signals, thus sifting out several intrinsic mode functions (IMFs) at disparate scales. Then, gait series can be extracted through peak detection from the eigen IMF that best represents gait rhythmicity. Compared with the method based on the empirical mode decomposition (EMD), the EEMD-based method has the following advantages: it remarkably improves the detection rate of peak values hidden in the original accelerometer signal, even when the signal is severely contaminated by the intermittent noises; this method effectively prevents the phenomenon of mode mixing found in the process of EMD. And a reasonable selection of parameters for the stop-filtering criteria can improve the calculation speed of the EEMD-based method. Meanwhile, the endpoint effect can be suppressed by using the auto regressive and moving average model to extend a short-time series in dual directions. The results suggest that EEMD is a powerful tool for extraction of gait rhythmicity and it also provides valuable clues for extracting eigen rhythm of other physiological signals. 展开更多
关键词 ensemble empirical mode decomposition gait series peak detection intrinsic mode functions
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
3
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
基于ICEEMDAN-CNN的斜拉桥损伤识别方法研究
4
作者 刘杰 耿亚飞 +1 位作者 杨俊 王麒麟 《石家庄铁道大学学报(自然科学版)》 2025年第2期23-29,共7页
针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验... 针对单一模型在斜拉桥海量监测数据中难以实现结构损伤的精准识别且抗噪性能不足的问题,提出了一种改进完全自适应噪声集合经验模态分解(ICEEMDAN)算法与一维卷积神经网络(1D-CNN)融合的斜拉桥损伤识别方法。在完全自适应噪声集合经验模态分解(CEEMDAN)的基础上,依据标准差特性推算合适的噪声源进行迭代更新,动态调整海量数据中的噪声水平并分解得到本征模态函数(IMF)分量;随后对IMF分量逐个进行最小二乘法非线性拟合,计算各个分量的Hurst指数用以筛选最佳IMF分量,为1D-CNN提供高质量的数据输入;细化调整卷积层结构与参数优化1D-CNN,提高模型对海量数据的泛化能力与计算效率,经训练后得到斜拉桥损伤识别模型;利用斜拉桥基准有限元模型提取多种工况数据,对斜拉桥损伤识别模型进行仿真分析。结果表明,ICEEMDAN-CNN模型在仿真分析时损伤定位精度为99.84%,损伤定量的最大误差为2.94%。 展开更多
关键词 斜拉桥 损伤识别方法 海量数据 一维卷积神经网络 改进完全自适应噪声集合经验模态分解
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
5
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair Complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) Generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:2
6
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(iceemdAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
7
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(iceemdAN) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
8
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(iceemdAN) 多尺度排列熵(MPE) 支持向量机(SVM) 灰狼算法(GWO) 故障诊断
在线阅读 下载PDF
基于ICEEMDAN-ICA的滚动轴承振动信号降噪算法
9
作者 吴诗谦 范焕羽 +1 位作者 蒋明涌 周君 《机电设备》 2024年第3期111-117,共7页
船用滚动轴承的振动信号由于机舱环境复杂以及轴承周期性与非周期性冲击的影响容易淹没在噪声信号中,导致故障特征频率难以提取。针对这一现状,提出一种结合改进的自适应噪声完备经验模态分解(ICEEMDAN)和独立分量分析(ICA)的滚动轴承... 船用滚动轴承的振动信号由于机舱环境复杂以及轴承周期性与非周期性冲击的影响容易淹没在噪声信号中,导致故障特征频率难以提取。针对这一现状,提出一种结合改进的自适应噪声完备经验模态分解(ICEEMDAN)和独立分量分析(ICA)的滚动轴承振动信号降噪处理方法。该方法主要针对经验模态分解(EMD)衍生算法存在的模态混叠问题进行改进并导入ICA处理,然后利用功率谱熵(PSE)对ICA分离信号进行筛选重构,利用包络谱和快速傅里叶变换对信号进行处理得到特征频率。通过该方法对多故障滚动轴承信号进行处理,发现本算法大幅降低了噪声及干扰,多项参数表现良好,有效提取了故障特征。 展开更多
关键词 自适应噪声完备经验模态分解 功率谱熵 盲源分离 特征提取 故障诊断
在线阅读 下载PDF
基于Seq2Seq双向模型的水锤压力预测
10
作者 吴罗长 刘振兴 +4 位作者 雷洁 颜建国 郭鹏程 孙帅辉 马晋阳 《振动与冲击》 北大核心 2025年第3期99-106,共8页
水锤计算对保障长距离输水工程管网系统安全稳定运行具有重要意义,但传统水锤数值方法存在模型复杂、计算量大的问题。为此,在自主开发的瞬态流试验平台上,通过支路快速关阀产生水锤,获取了不同流量和压力条件下的瞬态水锤压力。试验参... 水锤计算对保障长距离输水工程管网系统安全稳定运行具有重要意义,但传统水锤数值方法存在模型复杂、计算量大的问题。为此,在自主开发的瞬态流试验平台上,通过支路快速关阀产生水锤,获取了不同流量和压力条件下的瞬态水锤压力。试验参数范围为:体积流量15~55 m^(3)/h,压力150~450 kPa。采用集合经验模态分解方法对水锤信号进行滤波,并对水锤压力的变化规律进行了深入的研究分析。基于双向门控循环单元,建立了用于水锤压力预测的序列到序列(sequence-to-sequence,Seq2Seq)双向预测模型。结果表明,Seq2Seq双向预测模型能有效预测支路水锤,其预测数据决定系数在0.8以上,水锤特征参数预测准确率超过98%。该研究成果为水锤压力预测提供了一种新方法。 展开更多
关键词 水锤 瞬变流 Seq2Seq 经验模态分解
在线阅读 下载PDF
优化FEEMD与相似度量的滚动轴承故障特征提取
11
作者 马军 李祥 +1 位作者 秦娅 熊新 《兵器装备工程学报》 北大核心 2025年第3期252-266,共15页
针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(n... 针对快速集合经验模态分解(fast ensemble empirical mode decomposition,FEEMD)方法信噪分离不准确的问题,提出一种优化FEEMD与相似度量的滚动轴承故障特征提取方法。该方法建立基于最小包络熵的目标优化函数,并利用北方苍鹰优化算法(northern goshawk optimization,NGO)确定FEEMD的模型参数后,利用优化后的FEEMD将滚动轴承振动信号分解为多个本征模态函数分量和残余项,融合形态波动一致性偏移距离(morphology fluctuation conformance deviation distance,MFCDD)指标筛选有效分量进行重构,最后对重构信号进行Hilbert包络解调,完成滚动轴承故障特征提取。试验结果表明,所提方法相比变分模态分解方法、峭度分量选取方法、改进的完备集合经验模态分解联合豪斯多夫距离与峭度值方法,信噪比分别平均提升了1.75、12.2639、2.0605 dB,均方根误差分别降低了0.0078、0.0430、0.0656,能够更加清晰、全面地提取出故障特征频率及其倍频。 展开更多
关键词 滚动轴承 故障特征提取 集合经验模态分解 相似性 北方苍鹰算法
在线阅读 下载PDF
基于SSA-IWT-EMD的滚动轴承故障诊断方法
12
作者 雷春丽 焦孟萱 +3 位作者 樊高峰 刘世超 薛林林 李建华 《北京航空航天大学学报》 北大核心 2025年第4期1152-1162,共11页
针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各... 针对小波阈值降噪不充分及经验模态分解(EMD)特征频率提取不明显的问题,提出一种基于麻雀搜索算法-改进小波阈值-EMD(SSA-IWT-EMD)的滚动轴承故障诊断方法。引入2个调节因子,提出一种IWT函数,克服了传统软硬阈值的缺点,并运用SSA对其各参数进行全局寻优,实现滚动轴承信号降噪。提出一种综合指标P对EMD产生的分量进行选取重构,突出信号的故障特征信息。采用包络谱分析实现轴承的故障诊断。仿真和实测结果验证了所提方法的有效性;同时与单一指标选取分量的方法及文献方法进行对比,说明了综合指标P和所提方法具有更强的降噪能力及特征提取能力,包络谱幅值及倍频成分更明显,可以更好地实现对滚动轴承的故障诊断。 展开更多
关键词 滚动轴承 改进阈值 综合指标 经验模态分解 故障诊断
在线阅读 下载PDF
时间卷积长短时记忆网络煤矿平硐变形多步预测
13
作者 冀汶莉 淡新 +6 位作者 马晨阳 柴敬 吴玉意 秋风岐 刘文涛 雷武林 刘永亮 《煤炭科学技术》 北大核心 2025年第4期176-190,共15页
煤矿主平硐易受到外界因素的干扰,对其变形进行监测和预测十分重要。在光纤光栅监测平硐变形工程应用的基础上,提出了集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)的时间卷积网络(Temporal Convolutional Network,TCN... 煤矿主平硐易受到外界因素的干扰,对其变形进行监测和预测十分重要。在光纤光栅监测平硐变形工程应用的基础上,提出了集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)的时间卷积网络(Temporal Convolutional Network,TCN)结合长短时记忆神经网络(Long Short-Term-Memory Network,LSTM)的EEMD-TCN-LSTM平硐变形多步预测模型。首先,通过集成经验模态分解方法将包含有噪声的监测数据分解成若干本征模态函数(Intrinsic Mode Functions,IMF)分量。然后,计算IMF分量的模糊熵并选择有效IMF分量。最后,对不同有效分量序列利用TCN网络提取长时间维度特征,利用LSTM网络捕获非线性特征,叠加各分量预测结果。在预测模型的训练过程中采用多输出策略的多步预测方法,输出为未来多个时刻的光纤监测值。在不同光纤光栅传感器的监测数据上进行试验。结果表明:通过EEMD分解结合模糊熵法处理光纤监测数据,能在保留平硐变形信息的同时,过滤掉更多的噪声。与已有方法相比,预测方法在单步预测时,其评价指标决定系数(Coefficient of Determination,R^(2))可达到0.99,平方根误差(Root Mean Square Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)分别降低3.0%~10.0%和5.0%~20.0%,预测结果更准确。多输出策略下预测方法超前3步预测的R2平均为0.95,应变计的RMSE和MAE值至少降低了75.0%和31.5%,位移计的RMSE和MAE值至少降低了50.0%和66.7%,压力计的RMSE和MAE值至少降低了85.7%和62.3%,误差积累最低。集成经验模态分解的TCN-LSTM平硐变形多步预测方法,能够为巷道围岩变形预测提供技术基础。 展开更多
关键词 平硐变形 多步预测 TCN-LSTM预测模型 集成经验模态分解 煤矿智能化
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
14
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
15
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
16
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(iceemdAN-EWT) 误差分离
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
17
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
18
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
19
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于CEEMD-SE-PSR-BP的短期风速预测
20
作者 高晟扬 李法社 《太阳能学报》 北大核心 2025年第4期415-422,共8页
为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE... 为提升预测的准确度,提出一种互补集合经验模态分解(CEEMD)、样本熵(SE)、相空间重构(PSR)以及神经网络(BP)的短期风速预测新模型。首先运用CEEMD技术对风速时间序列进行拆解,化繁为简,分离出多个子序列。随后,计算每个子序列的SE,从SE的特征中重组风速序列。继而,将各子序列的预测结果进行相空间重构,获取神经网络预测的输入输出样本。最后运用神经网络预测每个样本,并将所有预测结果累加。此外,还对风电场的实际运行数据进行试验,并将模型的预测结果与其他预测方法进行对比,实验结果显示出此模型在提高风速预测精度方面的显著优势。 展开更多
关键词 风速预测 样本熵 互补集合经验模态分解 相空间重构 神经网络 时间序列
在线阅读 下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部