期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
频谱能量增强的IEWT滚动轴承故障诊断方法
1
作者 古莹奎 李成 吴宽 《机械设计与制造》 北大核心 2025年第1期70-74,81,共6页
尺度空间方法的经验小波变换(EWT)在滚动轴承故障诊断中容易出现共振频带过度分割、频带破裂,导致故障诊断失败。为此,提出频谱增强的改进经验小波滚动轴承故障诊断方法。首先,将Teager能量算子引入信号频谱,利用能量算子能够追踪并增... 尺度空间方法的经验小波变换(EWT)在滚动轴承故障诊断中容易出现共振频带过度分割、频带破裂,导致故障诊断失败。为此,提出频谱增强的改进经验小波滚动轴承故障诊断方法。首先,将Teager能量算子引入信号频谱,利用能量算子能够追踪并增强信号瞬时成分能量的特点,对信号频谱瞬时冲击进行能量增强,减小噪声对信号频谱的影响;其次,对能量增强后频谱进行频带极大值包络的改进经验小波变换(IEWT)分解,得到一系列固有模态;最后,对裕度因子最大的固有模态进行包络解调分析,提取轴承故障特征。分析结果表明,所提方法能够增强故障引起的瞬态冲击成分,减少噪声对频谱分割的影响,有效地避免共振频带的过度分割导致的频带破裂。 展开更多
关键词 频谱能量增强 改进经验小波变换 TEAGER能量算子 滚动轴承 故障诊断
在线阅读 下载PDF
基于IEWT-MOMEDA-FSC的滚动轴承故障诊断 被引量:2
2
作者 吴振雄 王林军 +2 位作者 邹腾枭 陈梦华 陈保家 《三峡大学学报(自然科学版)》 北大核心 2024年第1期92-98,共7页
针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,... 针对滚动轴承故障信号常伴有噪声干扰且故障特征难以提取的问题,本文提出一种基于改进经验小波变换(IEWT)、多点优化最小熵解卷积(MOMEDA)和快速谱相关(FSC)的滚动轴承故障诊断方法.首先,将原始信号进行快速谱相关分析得到增强包络谱,通过增强包络谱的极值点来自适应地划分频谱,以分割的频谱为边界构建小波滤波器组将信号分解为多个IMF分量,利用相关峭度准则筛选出有效的分量进行叠加;其次,用MOMEDA对其进行降噪处理,将降噪后的信号进行快速谱相关分析,得到增强包络谱图;最后,将增强包络谱图中幅值较高的频率与故障频率对比,判定其失效形式,用所提出的方法对实测轴承故障信号进行分析验证.结果表明,所提出的方法能有效降低噪音干扰且增强信号故障冲击特性,在噪声环境下具有较强的故障特征提取能力. 展开更多
关键词 改进经验小波变换 多点最优最小熵解卷积 快速谱相关 峭度 互相关
在线阅读 下载PDF
IEWT和FSK在齿轮与滚动轴承故障诊断中的应用 被引量:5
3
作者 向玲 高雪媛 +1 位作者 张力佳 李媛媛 《振动.测试与诊断》 EI CSCD 北大核心 2017年第6期1256-1261,共6页
改进的经验小波变换方法(improved empirical wavelet transform,简称IEWT)是一种新的自适应性信号处理方法,将这种方法和快速谱峭度(fast spectral kurtosis,简称FSK)相结合,进行齿轮与滚动轴承的故障诊断。首先,采用IEWT对信号进行分... 改进的经验小波变换方法(improved empirical wavelet transform,简称IEWT)是一种新的自适应性信号处理方法,将这种方法和快速谱峭度(fast spectral kurtosis,简称FSK)相结合,进行齿轮与滚动轴承的故障诊断。首先,采用IEWT对信号进行分解,筛选出故障特征最为明显的2个分量并重构信号;其次,对重构信号进行快速谱峭度滤波;最后,对滤波后的信号进行包络谱分析,提取出信号的故障特征。分析齿轮断齿及滚动轴承故障信号,与直接包络谱和基于EMD经验模态分解(empirical mode decomposition,简称EMD)方法的FSK滤波包络谱分析方法相比可知,采用IEWT处理后再进行FSK滤波的信号进行包络谱分析更具有区分性,可有效识别齿轮和滚动轴承的故障特征。 展开更多
关键词 经验小波分解 快速谱峭度滤波 包络谱分析 故障诊断
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
4
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于IEWT和IWAAE的滚动轴承故障识别研究 被引量:1
5
作者 韩建哲 艾建军 +1 位作者 邓名姣 袁朴 《机电工程》 CAS 北大核心 2022年第5期655-661,共7页
通过深度学习实现轴承故障识别时,存在着因信号噪声导致故障识别率较低的问题,针对这一问题,提出了一种基于改进经验小波变换(IEWT)和改进Wasserstein自编码器(IWAAE)的轴承故障识别方法。首先,将轴承振动数据由时域变换到包络谱域,通... 通过深度学习实现轴承故障识别时,存在着因信号噪声导致故障识别率较低的问题,针对这一问题,提出了一种基于改进经验小波变换(IEWT)和改进Wasserstein自编码器(IWAAE)的轴承故障识别方法。首先,将轴承振动数据由时域变换到包络谱域,通过包络谱的极值点与自适应阈值的关系对其进行了包络谱自动分割,进而利用经验小波变换,将数据自动分解为不同频段的调幅调频分量,并采用改进峭度指标对选取合适的分量进行了重构,进而对信号进行了有效降噪;然后,针对变分自编码器训练困难的缺陷,引入Wasserstein自编码器,根据Wasserstein自编码器中间层神经元的激活值大小,对神经元进行了自动增加或删减,进而构造了IWAAE;最后,将重构信号输入到IWAAE中,进行了滚动轴承故障特征的自动提取和故障识别。研究结果表明:与其它的轴承故障识别方法相比,采用IEWT-IWAAE方法的故障识别精度更高,准确率可达99.28%,标准差仅0.32;该方法能在一定程度上缓解传统方法对人工特征提取和特征选择的依赖,其对噪声的鲁棒性高,故障识别能力优于其他组合模型方法。 展开更多
关键词 旋转机械 包络谱分割 改进经验小波变换 改进Wasserstein自编码器 故障特征提取 信号降噪
在线阅读 下载PDF
基于IEWT-FE-BO-LSTM模型的超短期风功率预测 被引量:10
6
作者 陆秋贤 马刚 涂孟夫 《水电能源科学》 北大核心 2023年第1期217-220,共4页
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立... 为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。 展开更多
关键词 超短期风功率预测 改进经验小波分解 模糊熵 贝叶斯优化算法
在线阅读 下载PDF
基于IEWT和IFractalNet的滚动轴承故障诊断 被引量:7
7
作者 杜小磊 陈志刚 +1 位作者 王衍学 张楠 《振动与冲击》 EI CSCD 北大核心 2020年第24期134-142,共9页
针对传统滚动轴承故障诊断方法易受噪声干扰,过度依赖专家经验等问题,提出了一种基于改进经验小波变换(IEWT)和改进分形网络(IFractalNet)的诊断方法。改进经验小波变换Fourier谱的分割方式,将轴承原始振动信号自适应分解为若干本征模... 针对传统滚动轴承故障诊断方法易受噪声干扰,过度依赖专家经验等问题,提出了一种基于改进经验小波变换(IEWT)和改进分形网络(IFractalNet)的诊断方法。改进经验小波变换Fourier谱的分割方式,将轴承原始振动信号自适应分解为若干本征模态分量,并利用基于峭度、相关系数、能量比的综合评价指标筛选出最能反映信号故障特征的本征模态分量(imfs);针对样本集不平衡问题改进分形网络的损失函数和激活函数;将筛选到的imfs重构并输入IFractalNet进行自动特征提取与故障识别。实验结果表明:提出方法能够有效地对滚动轴承进行多种故障类型和多种故障程度的识别,避免了复杂的人工特征提取过程,相较于其他方法具有更高的泛化能力、特征提取能力和故障识别能力。 展开更多
关键词 滚动轴承 改进经验小波变换(iewt) 改进分形网络(IFractalNet) 故障诊断
在线阅读 下载PDF
IEWT-CS和LCNN在轴承故障诊断中的应用 被引量:2
8
作者 陈志刚 杜小磊 +1 位作者 张楠 张俊玲 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第3期463-472,共10页
针对传统轴承故障诊断方法易受噪声干扰、过度依赖专家经验和故障信号特征提取与优化选择困难的问题,本文提出了一种基于改进经验小波变换与压缩感知联合降噪结合导联卷积神经网络的轴承故障诊断方法。采用压缩感知方法减弱轴承信号强... 针对传统轴承故障诊断方法易受噪声干扰、过度依赖专家经验和故障信号特征提取与优化选择困难的问题,本文提出了一种基于改进经验小波变换与压缩感知联合降噪结合导联卷积神经网络的轴承故障诊断方法。采用压缩感知方法减弱轴承信号强背景噪声干扰;采用改进经验小波变换算法将信号分解为若干本征模态函数,并通过相关系数-峭度准则选出故障特征较为明显的分量并重构;将重构信号输入导联卷积神经网络中进行自动特征提取与故障识别。轴承故障诊断实验表明:提出方法受先验知识和主观影响较小,避免了复杂的特征提取与分类过程,相较于其他方法具有更高的泛化能力、特征提取能力和故障识别能力。 展开更多
关键词 滚动轴承 压缩感知 改进经验小波变换 导联卷积神经网络 故障诊断 模式识别 特征提取 降噪
在线阅读 下载PDF
基于CEEMD-IDWT的受载煤岩微震电压去噪算法 被引量:2
9
作者 李鑫 刘志勇 +4 位作者 杨桢 李昊 周婧 卜婧然 王艺儒 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期124-136,共13页
受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进... 受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进dmey小波(IDWT)算法相融合,提出一种新型CEEMD-IDWT联合去噪算法。该算法首先利用CEEMD算法对原始信号进行分解,然后对分解得到的IMF分量应用IDWT算法进行去噪处理,最终将处理过的分量进行重构得到去噪信号。利用仿真分析和单轴压缩实验对该算法的有效性进行验证,结果表明:CEEMD-IDWT联合算法在仿真分析中,相比传统算法信噪比最大提高204.5%,对于其他改进去噪算法信噪比最少提高11.8%,去噪能力具有明显优势;将该算法嵌入自研微震电压采集设备,在复合煤岩单轴压缩实验中得到的微震电压信号噪噪比仅为0.08975,实际去噪效果明显;经CEEMD-IDWT联合算法去噪之后的微震电压具有明显的变化特征,显著提升了信号去噪效果,有效避免了微震电压信号的失真,可以作为受载煤岩变形破裂微震电压信号去噪处理的理想算法,为煤岩动力灾害的准确预判提供了一种可靠且先进的技术参考。 展开更多
关键词 受载煤岩 微震电压 互补集合经验模态分解 改进dmey小波 去噪算法
在线阅读 下载PDF
基于EWT-FE分析联合改进SVM算法的GIS局部放电诊断方法 被引量:5
10
作者 王利猛 王硕 《电气工程学报》 CSCD 北大核心 2024年第1期371-381,共11页
为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结... 为提高气体绝缘组合电器(Gas insulated switchgear,GIS)局部放电类型诊断的精度,提出了一种基于EWT-FE结合IHPO-SVM算法的GIS局部放电诊断方法。为深度挖掘局部放电信号内部特征,利用经验小波变换(Empirical wavelet transform,EWT)结合模糊熵(Fuzzy entropy,FE)算法对信号进行分解,并提取有效特征量;为提高支持向量机(Support vector machine,SVM)算法自适应能力与分类识别精度,提出利用经过余弦衰减计算方法以及指数下降函数改进的猎人猎物优化(Improved hunter-prey optimizer,IHPO)算法对SVM算法参数进行优化选取;搭建GIS局部放电试验模型,建立基于EWT-FE信号分析结合IHPO-SVM的局部放电识别模型,对所提算法有效性进行验证。试验结果表明,所提算法GIS局部放电类型诊断精度均大于95%,优于传统诊断算法。 展开更多
关键词 局部放电 气体绝缘组合电器 经验小波变换 模糊熵 改进猎人猎物优化算法 支持向量机算法
在线阅读 下载PDF
基于自适应自相关谱峭度图的滚动轴承故障诊断方法 被引量:12
11
作者 郑近德 王兴龙 +2 位作者 潘海洋 童靳于 刘庆运 《中国机械工程》 EI CAS CSCD 北大核心 2021年第7期778-785,792,共9页
自相关谱峭度图通过最大重叠离散小波包变换对信号频谱进行分割,并选取最大峭度值所对应频带内的信号进行诊断分析。针对自相关谱峭度图方法在分割频带时因遵循二叉树结构而导致的频带划分区域固定问题,提出一种基于自适应自相关谱峭度... 自相关谱峭度图通过最大重叠离散小波包变换对信号频谱进行分割,并选取最大峭度值所对应频带内的信号进行诊断分析。针对自相关谱峭度图方法在分割频带时因遵循二叉树结构而导致的频带划分区域固定问题,提出一种基于自适应自相关谱峭度图方法的滚动轴承故障诊断方法。自适应自相关谱峭度图方法以改进的经验小波变换为基础,对原始信号傅里叶谱进行包络与平滑处理后再分割,实现了自相关谱峭度图方法自适应分割频带的目的。通过仿真信号与实验数据分析,并将所提方法与快速谱峭度及自相关谱峭度图方法进行对比,结果表明,所提出方法能够准确地检测到合适的解调频带,同时其故障特征更加明显。 展开更多
关键词 自相关谱峭度图 改进经验小波变换 滚动轴承 故障诊断
在线阅读 下载PDF
利用改进希尔伯特—黄变换进行地震资料时频分析 被引量:16
12
作者 曹思远 邴萍萍 +2 位作者 路交通 范廷恩 董建华 《石油地球物理勘探》 EI CSCD 北大核心 2013年第2期246-254,332+158-159,共9页
为了克服常规希尔伯特—黄变换(HHT)的缺陷,消除常规经验模态分解(EMD)产生的本征模态函数分量(IMF)中混叠的振荡模式,本文运用改进HHT,即通过引进小波包变换,首先将信号分解成一系列窄带信号,然后对这些窄带信号进行EMD获得一些IMF分量... 为了克服常规希尔伯特—黄变换(HHT)的缺陷,消除常规经验模态分解(EMD)产生的本征模态函数分量(IMF)中混叠的振荡模式,本文运用改进HHT,即通过引进小波包变换,首先将信号分解成一系列窄带信号,然后对这些窄带信号进行EMD获得一些IMF分量,再根据相关系数法,保留需要的IMF分量,去除虚假的IMF分量,最后进行HHT求取瞬时频率,得到改进HHT谱。改进HHT摆脱了小波变换中的海森堡测不准原理的限制,以及常规HHT模态混叠对分析的干扰。虽然改进HHT谱高频成分存在跳跃现象,但都围绕在真实频率值周围,并且较小波时频图的频带窄很多,能够反映信号的真实频率特性。数值模拟与实际地震记录处理结果证明了改进HHT的可行性。 展开更多
关键词 改进HHT 小波包变换 海森堡测不准原理 EMD IMF 时频分析
在线阅读 下载PDF
基于EWT的高压电缆局部放电信号降噪研究 被引量:29
13
作者 马星河 张登奎 +1 位作者 朱昊哲 许丹 《电力系统保护与控制》 EI CSCD 北大核心 2020年第23期108-114,共7页
在测量高压电缆的局放信号时会混入以周期性窄带干扰和随机白噪声为主的噪声成分。为抑制噪声成分对局放信号测量精确度的影响,提出一种基于经验小波变换(Empirical Wavelet Transform,EWT)的高压电缆局放信号降噪方法。利用自适应经验... 在测量高压电缆的局放信号时会混入以周期性窄带干扰和随机白噪声为主的噪声成分。为抑制噪声成分对局放信号测量精确度的影响,提出一种基于经验小波变换(Empirical Wavelet Transform,EWT)的高压电缆局放信号降噪方法。利用自适应经验小波变换对含噪信号进行分解,通过计算模态分量的峭度值,实现对脉冲信号的定位,将筛选出的有效特征分量进行重构。最后利用改进阈值函数去除重构信号中的冗余噪声,实现对多噪声的有效抑制。经仿真对比及现场试验测试,该方法能有效抑制窄带干扰和白噪声,较大程度地保留高压电缆局放中的有效信息,且在不同噪声环境下的降噪表现较为稳定。 展开更多
关键词 高压电缆 局部放电 经验小波变换 峭度 改进阈值 降噪
在线阅读 下载PDF
基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案 被引量:14
14
作者 洪翠 连淑婷 +1 位作者 黄晟 郭谋发 《电力自动化设备》 EI CSCD 北大核心 2022年第6期8-15,29,共9页
为快速检测及可靠识别直流配电网故障,提出一种基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案。通过最小二乘法非线性拟合故障电流局部的相频谱函数,基于此在一定的条件下修改经验小波函数的相频响应,使之尽... 为快速检测及可靠识别直流配电网故障,提出一种基于改进经验小波变换和改进多视角深度矩阵分解的直流配电网故障检测方案。通过最小二乘法非线性拟合故障电流局部的相频谱函数,基于此在一定的条件下修改经验小波函数的相频响应,使之尽可能与故障电流的局部相频特性相匹配;运用改进经验小波变换分解电流,计算细节分量c_(3)的模极大值,构造故障检测判据;设计一种权重自学习网络,依据数据对分类任务的重要性分配不同的权重,嵌套于多视角深度矩阵分解模型前端,运用改进多视角深度矩阵分解模型对电流分量c_(1)—c_(3)、极间电压u_(dc)这4个视角的数据进行故障特征提取,通过软分配层实现故障的分类。仿真测试结果表明,所提故障检测方案能够满足故障检测速动性、可靠性的要求,故障分类准确度高,为后续故障处理奠定了良好基础。 展开更多
关键词 直流配电网 故障检测与分类 改进经验小波变换 改进多视角深度矩阵分解
在线阅读 下载PDF
基于改进经验小波变换的高压电缆局部放电噪声抑制研究 被引量:15
15
作者 马星河 张登奎 《电工技术学报》 EI CSCD 北大核心 2021年第S01期353-361,共9页
对高压电缆的局部放电(PD)进行监测,并对其所包含的噪声信息进行抑制,是一种有效的绝缘评估方法。针对PD信号所包含的复杂噪声信息,提出一种基于改进经验小波变换(IEWT)的噪声抑制方法。该方法以IEWT分解为核心,通过将含噪信号分解为按... 对高压电缆的局部放电(PD)进行监测,并对其所包含的噪声信息进行抑制,是一种有效的绝缘评估方法。针对PD信号所包含的复杂噪声信息,提出一种基于改进经验小波变换(IEWT)的噪声抑制方法。该方法以IEWT分解为核心,通过将含噪信号分解为按频率顺序排列的经验小波函数(EWF),有效避免复杂噪声信号分解时的模态混叠现象。利用峭度规则对分解得到的EWF进行筛选,最后对筛选出的有用EWF进行重构和降噪处理,达到对复杂含噪信号的噪声抑制效果。模拟仿真以及现场测试表明,与现有基于EWT和基于EMD的降噪方法进行对比,该文所提方法可更有效地抑制PD信号所包含的噪声信息。 展开更多
关键词 高压电缆 局部放电 噪声抑制 改进经验小波变换 峭度 改进阈值
在线阅读 下载PDF
基于改进经验小波变换和最小二乘支持向量机的短期风速预测 被引量:23
16
作者 向玲 邓泽奇 《太阳能学报》 EI CAS CSCD 北大核心 2021年第2期97-103,共7页
针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性。在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘... 针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性。在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘支持向量机(IEWT-LSSVM)的短期风速预测方法,并通过模拟退火粒子群优化算法(SAPSO)对相空间重构参数以及LSSVM模型的2个超参数进行共同优化。最后以华北某风电场采集的风速信号为算例,结果表明基于IEWT-LSSVM的预测模型能有效追踪风速信号的变化,在单步预测和多步预测上均具有较高的预测精度。 展开更多
关键词 风速预测 相空间重构 最小二乘支持向量机 模拟退火粒子群算法 经验小波变换
在线阅读 下载PDF
基于改进的经验模态分解的时间序列匹配算法
17
作者 倪志伟 吴昊 刘慧婷 《系统仿真学报》 CAS CSCD 北大核心 2011年第11期2395-2399,共5页
针对经验模态分解(EMD)的不足之处,对原有EMD方法中利用上下包络的平均值得到平均包络进行了改进,采用三次样条对连续极值点的平均值进行插值获得平均包络。通过这种方式,增加了近似极值点,在"筛"过程的每次循环中,只需要一... 针对经验模态分解(EMD)的不足之处,对原有EMD方法中利用上下包络的平均值得到平均包络进行了改进,采用三次样条对连续极值点的平均值进行插值获得平均包络。通过这种方式,增加了近似极值点,在"筛"过程的每次循环中,只需要一次而不是两次样条插值,缓解了"过冲"和"欠冲"现象,改进了EMD方法。然后利用改进的EMD方法降低序列的维度,并用K均值算法实现模式匹配。实验结果表明,提出的在对EMD进行改进的基础上实现模式匹配的方法,优于传统的基于小波的模式匹配方法。 展开更多
关键词 相似模式匹配 改进的经验模态分解 样条插值 K均值 小波变换
在线阅读 下载PDF
基于改进经验小波变换的电能质量扰动检测新方法 被引量:46
18
作者 吴建章 梅飞 +3 位作者 潘益 周程 石天 郑建勇 《电力自动化设备》 EI CSCD 北大核心 2020年第6期142-148,共7页
针对经验小波变换(EWT)用于电能质量信号分析时,其频带划分结果易受频谱泄漏和噪声污染干扰的问题,提出一种基于改进经验小波变换(IEWT)的电能质量扰动检测新方法。首先,通过Fourier谱包络动态测度算法确定扰动信号的特征频点,并在原有... 针对经验小波变换(EWT)用于电能质量信号分析时,其频带划分结果易受频谱泄漏和噪声污染干扰的问题,提出一种基于改进经验小波变换(IEWT)的电能质量扰动检测新方法。首先,通过Fourier谱包络动态测度算法确定扰动信号的特征频点,并在原有频带边界的基础上进行延拓;然后,运用IEWT将扰动信号分解为若干调幅-调频(AM-FM)分量之和;最后对扰动分量实施标准希尔伯特变换,以求取扰动幅值、频率和起止时刻。通过算例仿真和变电站实测数据验证了所提方法的有效性,并对其检测结果进行对比分析。实验结果表明,所提方法兼具良好的模态分解能力和抗噪性能,且普适性更强,运算耗时更短,适用于工程实践。 展开更多
关键词 电能质量 扰动检测 改进经验小波变换 动态测度 标准希尔伯特变换
在线阅读 下载PDF
改进经验小波变换在齿轮低频微弱故障特征提取中的应用 被引量:3
19
作者 杜思雨 冷军发 +2 位作者 绳飘 荆双喜 罗晨旭 《机械科学与技术》 CSCD 北大核心 2021年第12期1856-1862,共7页
齿轮振动信号的经验小波变换频谱分割,可能会将啮合频率及其边频带划分到不同频带上,导致频带划分不合理,分离出的调幅-调频(AM-FM)分量不理想。针对上述主要问题,提出了一种采用频谱趋势进行频谱边界划分的改进经验小波变换方法,将齿... 齿轮振动信号的经验小波变换频谱分割,可能会将啮合频率及其边频带划分到不同频带上,导致频带划分不合理,分离出的调幅-调频(AM-FM)分量不理想。针对上述主要问题,提出了一种采用频谱趋势进行频谱边界划分的改进经验小波变换方法,将齿轮啮合频率与其相应的边频带划分到同一频带内,得到比较理想的AM-FM分量,实现了依据齿轮振动信号频谱局部特征的自适应分解。同时,对提取的AM-FM分量进行自相关分析以进一步增强改进经验小波变换的低频微弱故障特征提取效果。通过仿真与试验分析,验证了提出方法在齿轮低频微弱故障特征提取中的有效性及优势。 展开更多
关键词 改进经验小波变换 自相关分析 特征提取 齿轮低频微弱故障
在线阅读 下载PDF
环境风激励下超高层建筑模态参数识别 被引量:4
20
作者 蔡康 郅伦海 +1 位作者 李秋胜 刘俊 《应用力学学报》 CAS CSCD 北大核心 2021年第2期465-473,共9页
基于经验小波变换(EWT)及改进随机减量技术,推导了一种环境风激励下超高结构模态参数的时频分析算法。该方法首先对实测信号进行EWT分解,获得单模态分量,然后采用改进随机减量技术得到自由衰减响应,最后利用希尔伯特变换和线性拟合计算... 基于经验小波变换(EWT)及改进随机减量技术,推导了一种环境风激励下超高结构模态参数的时频分析算法。该方法首先对实测信号进行EWT分解,获得单模态分量,然后采用改进随机减量技术得到自由衰减响应,最后利用希尔伯特变换和线性拟合计算结构的自振频率和阻尼比。通过五层框架结构的数值算例验证了该方法的有效性,并利用该方法对台风"妮妲"作用下深圳平安金融中心的实测加速度进行时频分析,获得了深圳平安金融中心的阻尼比及自振频率,揭示了该超高结构模态参数瞬时变化特征。所识别的结构各阶频率略高于0.1Hz、平动阻尼比在1%以内的研究成果为超高层建筑健康监测和振动控制提供了依据和资料。 展开更多
关键词 经验小波变换 超高层建筑 改进的随机减量技术 模态参数 现场实测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部