期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
1
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测
2
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 YOLOv8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
3
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于卷积神经网络的水稻叶片病害检测与识别研究进展
4
作者 朱周华 周怡纳 王斌 《中国农机化学报》 北大核心 2025年第10期176-182,191,共8页
我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶... 我国水稻叶片病害的防治工作一直以来都是重中之重。实现快速、准确的病害检测和分类识别,有助于在早期及时发现病害并采取治疗措施,从而提高水稻的产量和品质。通过分析现有水稻叶片病害检测与识别算法发现,基于传统图像处理方法的叶片病害检测效率低并且准确率不高,但随着深度学习不断发展,基于卷积神经网络的病害检测与识别已成为研究人员关注的重要课题。针对近年来使用的模型算法总结归纳数据预处理与数据增强、框架结构改进和迁移学习等改进策略,对比分析这些算法的性能及其局限性,发现多数模型存在准确率与模型参数量性能不平衡的问题。从数据集构建、模型性能平衡和泛化能力等方面展望未来的研究趋势,为以后高效检测与识别水稻叶片病害提供参考。 展开更多
关键词 水稻叶片 病害检测与识别 卷积神经网络 目标检测 分类识别 改进策略
在线阅读 下载PDF
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测
5
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于卷积神经网络轻量化的改进SSD异纤检测方法
6
作者 胡胜 王紫悦 +3 位作者 张守京 李博豪 赵小惠 刘文慧 《计算机集成制造系统》 北大核心 2025年第1期171-181,共11页
精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引... 精准检测棉花中混杂的小型异纤是保障纱线与织物质量的基础和关键。针对现有算法在棉花小型异纤检测中存在的漏检率高、网络结构复杂等问题,提出一种基于卷积神经网络轻量化的改进单步多框检测器(SSD)的棉花异纤检测方法。首先,通过引入深度可分离卷积、倒残差结构等创新性设计,将SSD算法中原有骨干特征提取网络VGGNet16替换为MobileNetv2网络;然后,对于SSD算法中生成的候选框尺寸与棉花异纤大小不匹配导致棉花背景占比过高,从而引起正负样本不均衡的问题,采用K-means++算法对棉花异纤尺寸进行聚类分析,根据聚类结果修正候选框尺寸。通过算例进行验证,结果显示所提方法在实现模型轻量化的同时有效提升了异纤检测效果和计算效率。 展开更多
关键词 异纤检测 改进SSD 卷积神经网络 K-means++聚类 轻量化
在线阅读 下载PDF
基于IBWO-CNN-BiLSTM-Attention的机床刀具磨损预测模型
7
作者 崔业梅 杨焕峥 +1 位作者 薛洪惠 徐玲 《机床与液压》 北大核心 2025年第8期72-78,共7页
为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空... 为了提高机床刀具磨损预测的准确性,对优化算法进行改进,设计人工智能模型,并利用PHM2010刀具磨损数据集进行验证。构建一种基于IBWO-CNN-BiLSTM-Attention的预测模型,采用卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)学习数据的空间和时间特征,引入注意力机制(Attention)提高模型对关键信息的关注度。提出一种改进的白鲸优化算法(IBWO)优化模型参数和迭代次数,结合种群混沌映射初始化、准反向学习和萤火虫扰动策略,经CEC2005函数测试,该算法收敛速度和寻优精度明显优于传统BWO等对比算法。将该模型与CNN-BiLSTM-Attention模型、BWO-CNN-BiLSTM-Attention模型进行对比。结果表明:该模型在机床刀具磨损预测方面具有更高的准确性和可靠性。最后,在STM32H7单片机设备中部署了“剪枝”模型,并验证了“剪枝”模型在嵌入式设备中运行的可行性。 展开更多
关键词 机床刀具 磨损预测 改进的白鲸优化算法(IBWO) 双向长短时记忆网络(BiLSTM) 卷积神经网络(CNN)
在线阅读 下载PDF
基于拉曼光谱的变压器混合故障特征气体的改进卷积神经网络定量方法
8
作者 陈新岗 张文轩 +4 位作者 马志鹏 张知先 万福 敖怡 曾慧敏 《光谱学与光谱分析》 北大核心 2025年第4期932-940,共9页
激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低... 激光拉曼光谱技术在变压器故障特征气体检测方面具有明显优势,随变压器状态监测智能化的发展,研究混合故障特征气体的快速、准确定量分析方法具有重要意义。传统拉曼光谱分析需要预处理过程,极大程度依赖人为经验,光谱特征提取虽可降低信号维度,但也会造成其特征部分缺失或改变。针对上述问题,提出基于改进一维卷积神经网络与最小二乘支持向量回归相融合的拉曼光谱定量分析方法,即引入全局均值池化与最小二乘支持向量回归改进传统卷积神经网络,并运用Dropout方法提高模型泛化性能,防止过拟合。设计并搭建变压器故障特征气体拉曼光谱检测平台,采集7种故障特征气体及N_(2)、O_(2)混合气体的拉曼信号,在谱图2900 cm^(-1)频移附近,CH_(4)、C_(2)H_(6)气体呈现谱峰重叠,且变压器过热或局部放电故障发生时,会产生主要故障特征气体CH_(4),选择不同含量比例下的CH_(4)、C_(2)H_(6)混合气体作为研究对象具有代表性,按不同比例配制146组不同含量的CH_(4)、C_(2)H_(6)混合气体样本,检测时选用氮气作为标气,采集不同含量比例下混合气体样本的拉曼光谱数据,利用光谱数据增强方法,构建适用于深度神经网络的气体样本数据集。通过不断实验,优化网络结构参数与网络权重,完成模型训练并测试其预测效果,与多种定量模型进行对比分析,并研究光谱预处理对不同定量模型的影响,进而评估模型性能。结果表明,使用原始数据集建模时,改进卷积神经网络模型的预测精确度与回归拟合优度最佳,决定系数可达0.9998,均方根误差仅为0.0005 MPa;使用预处理后数据集建模时,改进卷积神经网络模型均方根误差为0.0023 MPa,相比使用原始数据集建模误差上升了0.0018,而传统方法误差均有所下降。该研究结果表明,所提方法与传统拉曼光谱定量方法相比,集成光谱预处理、特征提取和定量分析过程,在确保预测精确度的基础上,简化光谱分析流程,为快速、准确分析变压器混合故障特征气体提供了新的思路与参考。 展开更多
关键词 变压器 特征气体 拉曼光谱 改进一维卷积神经网络 定量分析
在线阅读 下载PDF
基于改进卷积神经网络的新能源并网短路电流预测技术
9
作者 于琳琳 蒋小亮 +2 位作者 贾鹏 孟高军 丁咚 《可再生能源》 北大核心 2025年第3期408-415,共8页
随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网... 随着新能源的大规模并网,大电网短路电流特征更加复杂、难以预测。基于此,文章提出了一种基于改进卷积神经网络的新能源并网短路电流预测技术。首先,分析短路电流特点,对短路电流进行变分模态分解,得到本征模态函数;其次,对卷积神经网络进行改进,利用多尺度特征提取将电流故障数据特征最大化,引入注意力机制提取重要信息,卷积过程中使用跳跃连接的方式防止前向传递时信息丢失,有利于提高预测的准确性,构建基于改进卷积神经网络的短路电流预测模型;最后,经过PSCAD/EMTDC电网模型进行验证。结果表明,所提方法对短路电流峰值预测有着较高的精度,与常见的极限学习机、支持向量机相比,平均相对误差分别降低了0.61%,1.09%,验证了文章所提方法的有效性。 展开更多
关键词 新能源 改进卷积神经网络 短路电流预测 变分模态分解 注意力机制
在线阅读 下载PDF
计及时空特性的变压器油中溶解气体预测模型 被引量:1
10
作者 李紫豪 何怡刚 +1 位作者 周亚中 雷蕾潇 《电子测量与仪器学报》 北大核心 2025年第3期1-12,共12页
针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度... 针对电力变压器复杂运行环境下油中溶解气体随时间呈现非平稳和非线性特性,仅考虑时间维度关联特征的神经网络预测模型难以满足高准确性、高可靠性需求,且在数据采集过程中不可避免的存在异常值,导致数据质量下降,进而影响预测模型精度。因此首先采用基于密度的噪声应用空间聚类(DBSCAN)对油中溶解气体数据清洗,然后提出自适应非线性权重和莱维飞行策略改进鲸鱼优化算法,提高其局部及全局寻优能力,利用改进的鲸鱼优化算法优化DBSCAN中超参数提高数据清洗效果,最后分析气体成分间复杂关联关系,构建时空耦合卷积神经网络模型挖掘气体的时空特征,实现油中溶解气体时间序列预测。通过某电站变压器油中溶解气体实测数据验证,结果表明数据清洗后预测拟合优度(R^(2))提高0.727,在6种特征气体预测中R2都在0.9以上。相较于其他模型,所提模型在特征气体预测中均取得了最佳的预测结果,充分证明所提模型的有效性。 展开更多
关键词 改进的鲸鱼优化算法 数据清洗 时空耦合卷积神经网络 油中溶解气体预测
在线阅读 下载PDF
基于多模型融合的轴承剩余寿命预测方法
11
作者 第轩 肖旺 +1 位作者 王庆锋 宋运锋 《计算机集成制造系统》 北大核心 2025年第7期2412-2424,共13页
准确预测滚动轴承的剩余使用寿命对于保证机械系统的安全运行和制定维修策略具有重要意义。然而,在实际工业应用中,由于工况的变化和环境噪声的干扰,从采集到的信号中提取有用特征十分困难。此外,还存在首次预测时间(FPT)测定模型准确... 准确预测滚动轴承的剩余使用寿命对于保证机械系统的安全运行和制定维修策略具有重要意义。然而,在实际工业应用中,由于工况的变化和环境噪声的干扰,从采集到的信号中提取有用特征十分困难。此外,还存在首次预测时间(FPT)测定模型准确度较低以及趋势分析模型过于简单等问题。上述问题使得机械设备剩余使用寿命(RUL)的高精度预测变得极具挑战。为此,提出了多模型融合的轴承剩余使用寿命预测新方法:首先,构建了结合改进深度森林(GADF)的健康指标模型和结合自注意力机制的自编码器(SAAE)的FPT测定模型;随后,基于FPT测定结果构建粒子滤波模型进行健康指标的趋势分析,最终得到机械设备的剩余使用寿命。实验验证表明,所提方法相较于其他方法具有较高的预测精度。 展开更多
关键词 剩余寿命预测 滚动轴承 长短时记忆神经网路 卷积神经网络 改进的深度森林 健康指标 粒子滤波 自编码器 自注意力机制
在线阅读 下载PDF
改进粒子群算法优化CNN LSTM Attention模型在安全生产事故预测中的应用 被引量:1
12
作者 汪敏 田大平 《安全与环境学报》 北大核心 2025年第5期1829-1837,共9页
安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、... 安全生产事故的预测一直是研究的热点,许多模型在处理长时间序列数据时往往会丢失信息,影响了预测精度。提出了一种将改进粒子群算法(Improved Particle Swarm Optimization,IPSO)与卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络和注意力(Attention)机制相结合的新方法,建立了IPSO-CNN-LSTMAttention模型以提高对安全生产事故和死亡人数预测的准确性。首先,引入了一种改进的粒子群算法,建立动态非线性惯性权重来寻找模型中重要超参数的最优值,利用CNN从输入数据中提取退化特征,然后结合LSTM捕捉历史序列的时间相关性。最后,引入注意力机制,增强关键信息的影响,优化了整体预测模型。将该模型与CNN模型、CNN-LSTM-Attention模型和PSO-CNN-LSTM-Attention模型进行比较,结果表明,该模型能有效地捕捉数据的变化趋势,且模型的平均绝对百分比误差、均方根误差、平均绝对误差和决定系数均优于其他模型,证实IPSO-CNN-LSTM-Attention模型达到了很好的拟合优度和预测精度。分析了各变量对预测的贡献程度,研究结果可为安全生产预警和预防提供参考。 展开更多
关键词 安全工程 改进粒子群算法 卷积神经网络 长短期记忆 注意力机制 安全生产事故
在线阅读 下载PDF
基于HTMFDE以及ICNN的滚动轴承寿命状态识别方法 被引量:1
13
作者 董绍江 刘文龙 +2 位作者 方能炜 胡小林 余腾伟 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第2期723-734,共12页
针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积... 针对滚动轴承退化性能难以评估、寿命状态难以识别的难题,提出一种结合层次时移多尺度波动散布熵(Hierarchical Time-shifted Multiscale Fluctuation Dispersion Entropy,HTMFDE)、JRD距离(Jensen-Renyi divergence,JRD)以及改进卷积神经网络(Improved convolution neural network,ICNN)的轴承寿命状态识别新方法。首先,在传统多尺度波动散布熵的基础上,将传统均值粗粒化过程替换为改进的时移粗粒化过程,以解决传统均值粗粒化导致信号幅值特征丢失的问题。同时引入层次分解理论,克服多尺度分析方法不能全面提取不同频段故障特征的不足,得到最终的HTMFDE。之后利用HTMFDE方法提取滚动轴承信号的多维状态特征量,并进行归一化形成一组概率分布,计算轴承正常信号与故障信号之间的JRD距离作为性能退化指标。其次,根据构建的JRD性能退化曲线,划分轴承寿命状态并制作数据集,通过标签化的样本训练具有双层多尺度特征提取层的卷积神经网络,建立滚动轴承寿命状态识别模型。为了加快模型的收敛速度,对每层卷积进行批量归一化操作,同时采用全局池化代替全连接层以提升模型的训练效率。最后,在2组不同的轴承数据集上进行实验。实验结果表明,根据HTMFDE构建的JRD性能退化曲线能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的ICNN模型在SNR=0~10 dB环境中平均识别正确率为98.5%,能够准确地识别轴承寿命状态,验证了所提方法的实用性以及有效性。 展开更多
关键词 寿命状态识别 滚动轴承 层次时移多尺度波动散布熵 JRD距离 改进卷积神经网络
在线阅读 下载PDF
基于改进双重压缩和激励与多头特征注意力机制的电-热负荷协同预测
14
作者 余强 韩静娴 +4 位作者 杨子梁 宋济东 杨德昌 齐海杰 于芃 《电力自动化设备》 北大核心 2025年第3期201-208,共8页
综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注... 综合能源系统中负荷多样且存在耦合,为提升负荷预测精度,提出一种基于改进双重注意力机制的分组卷积神经网络-门控循环单元短期电-热负荷协同预测模型。通过改进的压缩和激励注意力为各输入通道加权,再对其进行分组卷积;利用多头特征注意力对卷积结果进行赋权,并利用输入门控循环单元模型对负荷进行预测。算例仿真结果表明,所提模型的平均绝对百分比误差均低于3%。 展开更多
关键词 综合能源系统 负荷预测 分组卷积神经网络 门控循环单元 改进的压缩和激励注意力机制 多头特征注意力机制
在线阅读 下载PDF
基于改进Faster-RCNN的起重机钢丝绳表面缺陷识别方法
15
作者 苏立鹏 娄益凡 +3 位作者 杨吴奔 高建貌 王雪迎 易灿灿 《机电工程》 北大核心 2025年第7期1341-1349,共9页
针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识... 针对现有的起重机钢丝绳表面缺陷检测中存在的检测效率低、准确度差、鲁棒性有限等问题,提出了一种基于改进快速区域卷积神经网络(Faster-RCNN)的起重机钢丝绳表面缺陷识别检测方法,该方法结合多个关键技术,显著提升了钢丝绳表面缺陷识别的性能。首先,采用了多尺度策略提高输入图像的分辨率,从而更好地检测不同大小的缺陷;其次,在网络中引入了可变形卷积,以增强其捕捉传统卷积技术难以检测的钢丝绳缺陷复杂形状特征的能力;采用了路径增强技术融合低维和高维特征,有效解决了在下采样和特征融合过程中信息丢失的问题,极大提升了模型在各层之间保持关键信息的能力;最后,采用了广义交并比(GIOU)损失函数替代传统的交并比(IOU)损失函数,显著提高了边界框预测的准确性,验证了改进后的Faster-RCNN算法在起重机钢丝绳损伤检测的性能提升方面较为显著。研究结果表明:改进版Faster-RCNN模型相比原算法在精度上有了显著提高,准确率从81.8%提升至90.2%,召回率从83.8%提高至94.2%,最终平均精度达到0.934,提升了9.6%。与传统检测算法如SSD和原版YOLOv5相比,该方法的准确率分别提高了17.6%和11.0%,证明了其在钢丝绳损伤图像识别中的有效性。 展开更多
关键词 起重机械 损伤检测 改进的快速区域卷积神经网络 多尺度和自定义锚框策略 广义交并比损失函数 可变形卷积 路径增强特征金字塔 区域提议网络 消融实验
在线阅读 下载PDF
基于光伏组件图像特征的故障检测方法
16
作者 殷孝雎 于金池 +1 位作者 郝志鹏 潘雪 《太阳能学报》 北大核心 2025年第4期273-279,共7页
针对集中式光伏电站地形复杂、面积广、光伏组件故障识别较困难的情况,提出基于YOLOv8模型改进的光伏组件故障识别检测方法。基于Backbone结构采用渐进特征金字塔(AFPN)融合不同层级的图像提取多尺度信息,增强上下文信息的融合。通过在N... 针对集中式光伏电站地形复杂、面积广、光伏组件故障识别较困难的情况,提出基于YOLOv8模型改进的光伏组件故障识别检测方法。基于Backbone结构采用渐进特征金字塔(AFPN)融合不同层级的图像提取多尺度信息,增强上下文信息的融合。通过在Neck结构添加无参数注意力机制(SimAM),由能量函数推断出特征图中的三维注意力权重,轻量化地提高模型表征能力。取代每个池化层和每个跨步卷积层而建立SPD-Conv卷集神经网络,提高光伏组件图像中出现热斑、黑边和划痕等小目标特征的故障识别能力。实验结果表明,改进模型召回率和精确率分别达到78.7%和84.9%,平均精度mAP50和mAP50-95分别达到86%和57.9%,实现对光伏组件故障的识别与定位,验证该模型的正确性和有效性。 展开更多
关键词 光伏组件 深度学习 目标检测 卷积神经网络 改进YOLOv8 注意力机制
在线阅读 下载PDF
基于知识蒸馏的卷积神经网络压缩方法
17
作者 郑筠 高朋 《沈阳工业大学学报》 北大核心 2025年第3期348-354,共7页
【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提... 【目的】卷积神经网络作为深度学习领域的一项重要技术,在图像识别、目标检测、自然语言处理等多个领域展现出了卓越的性能。然而,随着模型深度和复杂度的增加,卷积神经网络模型的大小和计算需求也急剧上升,这为模型的部署和实时应用提出了严峻挑战。【方法】为减少神经网络的大小和计算量,并提高模型的效率和可部署性,提出了基于知识蒸馏的卷积神经网络压缩方法。通过将大型复杂模型(教师网络模型)中的知识转移给小型精简模型(学生网络模型)来实现模型的压缩和加速,本文建立了性能优异的教师网络和结构更简单、参数更少的学生网络。教师网络负责提供丰富的特征表示和准确的预测结果,学生网络则通过学习教师网络行为来逼近其性能。使用标准损失函数,并通过反向传播算法迭代更新其参数,确保其在训练数据集上达到良好的性能。采用改进知识蒸馏方法获取综合阈值函数,评估教师网络和学生网络之间的知识差异,并指导学生网络的学习过程。在训练过程中,学生网络利用综合阈值函数进行监督,逐步逼近教师网络的输出,同时保持较小的模型结构和计算复杂度,从而实现了卷积神经网络的压缩处理。【结果】实验结果表明:本文方法在ImageNet和Labelme数据集上均表现出较好的模型压缩效果。其中,本文方法在压缩前后卷积神经网络输出结果的拟合度较高,表明学生网络成功学到了教师网络的关键特征;交叉熵损失值较低,在1.0左右,进一步验证了其良好的预测性能;完成卷积神经网络模型的压缩时间较短,为79.8~89.4 s,表明本文方法具有较高的计算效率。【结论】由以上结果可知,基于知识蒸馏卷积神经网络压缩方法能够有效减小模型结构、降低计算量,并保持甚至提升了模型的性能。本文方法不仅为模型压缩提供了一种新的思路,还为深度学习模型的部署和应用提供了有力支持。此外,本文方法在知识蒸馏方法上进行了改进,通过引入综合阈值函数来更全面地评估和指导模型的学习过程,在一定程度上提升了知识蒸馏的效果和效率。因此,本文方法不仅具有理论价值,还具有重要的实践意义。 展开更多
关键词 卷积神经网络压缩 改进知识蒸馏方法 判别器 学生网络 教师网络 标准损失函数 综合阈值函数 交叉熵损失值
在线阅读 下载PDF
基于参数优化的ICEEMDAN滚动轴承故障诊断
18
作者 李雨晴 马洁 《机床与液压》 北大核心 2025年第6期21-27,共7页
滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CP... 滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CPO对ICEEMDAN的白噪声幅值权重及噪声添加次数进行参数寻优,将最优参数返回并进行信号分解,以最小包络熵作为相关度函数,筛选出相关程度高的特征模态分量(IMF);将重构的有效特征分量IMF转化为特征向量并输入到CNN模型中,从而实现轴承的故障诊断。与已有模型进行对比,结果表明:该方法具有较强的泛化能力,诊断精度明显优于现有方法,并且具有更高的诊断效率。 展开更多
关键词 故障诊断 冠豪猪优化算法(CPO) 改进自适应噪声完备经验模式分解(ICEEMDAN) 卷积神经网络(CNN)
在线阅读 下载PDF
基于ICNN-BiGRU的轴承故障诊断模型 被引量:3
19
作者 杨慧 张瑞君 陈国良 《机电工程》 CAS 北大核心 2022年第11期1559-1566,共8页
在实际使用过程中,基于深度学习模型的滚动轴承故障诊断方法易受环境噪声的干扰,为此,提出了一种基于改进卷积神经网络双向门控循环单元(ICNN-BiGRU)的滚动轴承故障诊断模型(方法)。首先,使用Laplace小波对采集到的滚动轴承振动信号进... 在实际使用过程中,基于深度学习模型的滚动轴承故障诊断方法易受环境噪声的干扰,为此,提出了一种基于改进卷积神经网络双向门控循环单元(ICNN-BiGRU)的滚动轴承故障诊断模型(方法)。首先,使用Laplace小波对采集到的滚动轴承振动信号进行了相关滤波,得到了功率谱;然后,利用ICNN-BiGRU自动提取了功率谱特征,在卷积神经网络基础上引入了动态选择机制和自注意力机制,根据轴承不同故障状态定位了相关的特征信息,从而实现了轴承故障特征提取和故障诊断;最后,通过西安交通大学昇阳科技(XJTU-SY)联合实验室的滚动轴承加速寿命试验数据集,对ICNN-BiGRU模型与其他深度学习模型进行了对比,以验证ICNN-BiGRU模型的优越性。研究结果表明:相比于其他深度学习模型,ICNN-BiGRU模型的故障诊断精度更高,其诊断准确率可达99.65%;在不同背景噪声的干扰下,相比于其他深度学习模型,ICNN-BiGRU模型的特征学习能力更强,具有一定的工程参考价值。 展开更多
关键词 深度学习模型 特征学习能力 改进卷积神经网络 双向门控循环单元 Laplace小波 动态选择 自注意力
在线阅读 下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:5
20
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部