期刊文献+
共找到89篇文章
< 1 2 5 >
每页显示 20 50 100
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:8
1
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal noise reduction empirical mode decomposition(EMD) ensemble EMD(EEMD) complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
基于ICEEMDAN-PE-GDBO-LSSVM的风电功率预测
2
作者 汪繁荣 张旭东 《现代电子技术》 北大核心 2025年第10期57-62,共6页
随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM... 随着可再生能源特别是风电的高比例接入,电网面临着前所未有的不确定性和波动性挑战。为准确预测风电功率,提出一种基于改进的自适应噪声完全集合经验模态分解(ICEEMDAN)-排列熵(PE)-改进的蜣螂优化算法(GDBO)-最小支持二乘向量机(LSSVM)的组合模型。首先使用ICEEMDAN对风电数据进行分解,从而降低复杂度;之后根据PE对分解后得到的各分量进行聚合,再使用GDBO算法对LSSVM的关键参数进行寻优,以得到最佳预测模型;最后使用优化模型对各聚合分量分别进行预测和叠加,得到总的预测结果。基于国内风电场数据集进行实验验证,结果表明所提方法有较高的预测精度,均方根误差比单一的LSSVM模型低61.39%,在工程实践中具有更为广阔的应用前景。 展开更多
关键词 风电功率预测 自适应噪声完全集合经验模态分解 改进的蜣螂优化算法 排列熵 改进的完全集合经验模态分解 最小支持二乘向量机 分量聚合
在线阅读 下载PDF
Missing interpolation model for wind power data based on the improved CEEMDAN method and generative adversarial interpolation network 被引量:4
3
作者 Lingyun Zhao Zhuoyu Wang +4 位作者 Tingxi Chen Shuang Lv Chuan Yuan Xiaodong Shen Youbo Liu 《Global Energy Interconnection》 EI CSCD 2023年第5期517-529,共13页
Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors... Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations. 展开更多
关键词 Wind power data repair complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN) Generative adversarial interpolation network(GAIN)
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:2
4
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(iceemdan) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
5
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(iceemdan) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于ICEEMDAN-ICA的滚动轴承振动信号降噪算法
6
作者 吴诗谦 范焕羽 +1 位作者 蒋明涌 周君 《机电设备》 2024年第3期111-117,共7页
船用滚动轴承的振动信号由于机舱环境复杂以及轴承周期性与非周期性冲击的影响容易淹没在噪声信号中,导致故障特征频率难以提取。针对这一现状,提出一种结合改进的自适应噪声完备经验模态分解(ICEEMDAN)和独立分量分析(ICA)的滚动轴承... 船用滚动轴承的振动信号由于机舱环境复杂以及轴承周期性与非周期性冲击的影响容易淹没在噪声信号中,导致故障特征频率难以提取。针对这一现状,提出一种结合改进的自适应噪声完备经验模态分解(ICEEMDAN)和独立分量分析(ICA)的滚动轴承振动信号降噪处理方法。该方法主要针对经验模态分解(EMD)衍生算法存在的模态混叠问题进行改进并导入ICA处理,然后利用功率谱熵(PSE)对ICA分离信号进行筛选重构,利用包络谱和快速傅里叶变换对信号进行处理得到特征频率。通过该方法对多故障滚动轴承信号进行处理,发现本算法大幅降低了噪声及干扰,多项参数表现良好,有效提取了故障特征。 展开更多
关键词 自适应噪声完备经验模态分解 功率谱熵 盲源分离 特征提取 故障诊断
在线阅读 下载PDF
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
7
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(iceemdan) 多尺度排列熵(MPE) 支持向量机(SVM) 灰狼算法(GWO) 故障诊断
在线阅读 下载PDF
抵抗低频高能噪声影响的海上风电结构模态参数识别方法研究
8
作者 董霄峰 时泽坤 彭泓浩 《振动与冲击》 北大核心 2025年第9期214-222,265,共10页
模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识... 模态参数是体现海上风电结构运行安全状态的关键指标,然而复杂多变的海洋环境会导致实测振动信号中混有大量低频高能噪声,严重影响模态识别精度。为实现海上风电结构模态参数的准确识别,提出一种能够抵抗低频高能噪声影响的模态参数识别方法(CEEMDAN-VMD-SSI,CVS)。首先,利用完全自适应噪声集合经验模态分解法(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)滤除原始信号中的高频噪声;随后,通过麻雀优化算法(sparrow’s optimization algorithm, SSA)以最小包络熵作为适应度函数迭代计算自适应确定变分模态分解法(variational mode decomposition, VMD)的信号分解层数K和惩罚因子α,实现信号的VMD自适应优化分解以剔除低频高能噪声影响;最后,再采用随机子空间方法实现信号中模态参数的识别提取。研究分别针对构造仿真含噪信号和原型观测信号开展了识别效果对比验证。结果表明:相比于传统模态识别方法,CVS方法在信噪比、波形相似系数、相对误差等参数方面具有更好的有效性和精确性;同时,该方法对实测信号的处理能力强,降噪效果好,能够准确识别结构固有频率、叶轮转动频率(1P)和叶片扫掠频率(3P),具有良好的工程适用性,为后续基于实测数据开展海上风电结构模态参数识别与运行安全评价提供了新思路。 展开更多
关键词 海上风电 模态参数识别 低频高能噪声 完全自适应噪声集合经验模态分解(CEEMDAN) 变分模态分解法(VMD)
在线阅读 下载PDF
基于二次CEEMDAN与CCJC的滚动轴承故障冲击特征提取
9
作者 张亢 曹振华 +2 位作者 刘鹏飞 陈向民 牛晓瑞 《噪声与振动控制》 北大核心 2025年第1期112-118,247,共8页
滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEM... 滚动轴承故障振动信号的成分复杂多样,且受噪声和传递路径的影响,导致从中提取表征故障的周期性冲击成分难度很大。对此,利用自适应噪声完全集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)良好的非平稳非线性数据处理能力,首先将原始轴承振动信号中的各种成分予以分离,在此基础上,提出相关系数跳变准则(Correlation Coefficient Jump Criterion,CCJC)区别以故障周期性冲击成分为主的分量,以及以噪声和转频成分为主的分量,并通过二次分解二次重构的方式,最大限度去除噪声与转频相关成分,最终得到提纯的滚动轴承故障周期性冲击信号。通过对滚动轴承故障仿真信号和基准数据的分析,表明所提方法可以准确高效提取轴承故障周期性冲击成分;对滚动轴承实验振动信号进行分析,并与经典方法对比,验证所提方法的优势及其良好的工程应用前景。 展开更多
关键词 故障诊断 滚动轴承 振动信号 周期性冲击特征 自适应噪声完全集合经验模态分解 相关系数跳变准则
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
10
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(iceemdan-EWT) 误差分离
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断
11
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
12
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于遥感数据的河谷地区气候水文变化特征及区域差异--以宝鸡地区为例
13
作者 刘引鸽 罗紫薇 +3 位作者 郭慧君 李丹丹 林茂琦 吕欣怡 《水土保持研究》 北大核心 2025年第1期181-194,共14页
[目的]探究不同分区气候水文多要素变化特征,为该地水资源管理及可持续开发利用提供区域性的科学依据。[方法]基于1950-2021年的卫星遥感数据,选取宝鸡地区9个县区的气温、地表温度、降水量、蒸发量、低层云量、总云量、紫外强度、相对... [目的]探究不同分区气候水文多要素变化特征,为该地水资源管理及可持续开发利用提供区域性的科学依据。[方法]基于1950-2021年的卫星遥感数据,选取宝鸡地区9个县区的气温、地表温度、降水量、蒸发量、低层云量、总云量、紫外强度、相对湿度、径流、地表径流和地下径流11种要素,采用自适应噪声经验模态分解法(CEEMDAN)和重标极差R/S分析方法,分析了近70年该区域多气象水文要素时空特征及区域差异,探讨了不同分区气候水文要素变化的延续性及未来趋势。[结果](1)区域仅年气温和地温呈上升趋势,其余要素的年均趋势均呈下降趋势,各要素趋势率分别为0.27℃/10 a,0.25℃/10 a,-40.97 mm/10 a,-0.59 mm/10 a,-1.14%/10 a,-0.17%/10 a,-4060.4 J/(m^(2)·10 a),-0.99%/10 a,-3.6 mm/10 a,-1.61 mm/10 a和-1.94 mm/10 a。季节变化上,冬季气温和地温上升趋势最大,夏季降水减少幅度最大,紫外强度仅在春季表现为上升趋势,春季相对湿度减小最大,低层云量春季减小最大,径流和地表径流夏季的下降趋势最大,地下径流秋季的下降趋势最大。千陇丘陵区各要素的变率都较大;(2)空间上,年气温、地温、蒸发量和紫外强度的高值多分布于千陇丘陵区和渭河川塬区,年降水量、低层云量、总云量、相对湿度、径流、地表径流和地下径流的高值区多分布在秦岭关山区。除凤县和眉县的蒸发量外,其他要素在各县区的升降趋势均与其在整个地区的趋势一致;(3)各气象水文要素具有2~3 a,4~5 a,7~9 a,11~13 a,19~35 a为主的年代际振荡周期;(4)未来宝鸡地区各气象水文要素均延续历史的上升或下降趋势,但延续时长不同,其中千陇丘陵区、渭河川塬区和秦岭关山区均存在最长延续时长10 a和最短延续时长4 a。[结论]宝鸡地区气候整体朝暖干化方向发展,各分区气候水文变化具有明显差异,且均存在明显振荡周期和正持续特征。 展开更多
关键词 气象水文要素 时空变化 自适应噪声分解法 重标极差分析法 遥感数据
在线阅读 下载PDF
基于Transformer和ARMA双数据驱动模型的抽水蓄能机组劣化趋势集成预测
14
作者 钟子威 祝令凯 +3 位作者 郭俊山 郑威 巩志强 商攀峰 《水电能源科学》 北大核心 2025年第3期191-195,共5页
为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根... 为更精准地预测抽水蓄能机组劣化趋势,提出了一种基于Transformer和自回归滑动平均(ARMA)双数据驱动模型的抽水蓄能机组劣化趋势集成预测方法。该方法先利用完全自适应噪声集成经验模态分解对CatBoost模型构建的劣化序列进行分解,再根据分解所得分量的不同时间尺度特性,利用Transformer模型对非线性分量进行预测,利用ARMA模型对线性分量进行预测,最后将预测值叠加得到最终预测结果。利用某抽水蓄能机组监测数据进行试验,结果表明,所提方法具有较好的预测性能,能够有效提高抽水蓄能机组劣化趋势预测准确性。 展开更多
关键词 劣化趋势预测 完全自适应噪声集成经验模态分解 TRANSFORMER 自回归滑动平均
在线阅读 下载PDF
基于MODWT-CEEMDAN-LSTM的短期光伏功率区间预测模型
15
作者 陈船宇 熊国江 +1 位作者 方厚康 罗颖勋 《太阳能学报》 北大核心 2025年第2期416-424,共9页
针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解... 针对光伏功率的波动性、随机性、间歇性,提出一种基于最大重叠小波变换(MODWT)、自适应噪声完备集合经验模态分解(CEEMDAN)、长短期记忆网络(LSTM)的光伏功率短期区间预测模型。首先利用MODWT和CEEMDAN将光伏功率时间序列进行二次分解得到本征模态函数(IMF)分量;再将这些IMF分量分别输入进LSTM进行分量预测并将分量预测结果重构得到点预测结果;最后利用分位数回归对点预测结果进行建模后得到区间预测结果。实际算例表明,时频域分解方法与频域分解方法的结合,使得该模型在3种天气情况下的光伏功率点预测和区间预测均表现出优异的鲁棒性和准确性。 展开更多
关键词 光伏功率 预测 深度学习 长短期记忆 最大重叠小波变换 自适应噪声完备集合经验模态分解
在线阅读 下载PDF
基于TLGMCC准则联合CEEMDAN与LWT的优化降噪方法
16
作者 刘彦明 曹敏 +1 位作者 孙安 项敢亮 《光通信技术》 北大核心 2025年第2期11-16,共6页
针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分... 针对分布式光纤声传感系统信号信噪比过低的问题,提出一种基于时域局部广义最大互相关熵(TLGMCC)准则联合自适应噪声完备集合经验模态分解(CEEMDAN)与提升小波变换(LWT)的优化降噪方法。首先,使用自适应噪声完备CEEMDAN对原始信号进行分解,获取模态分量。接着,将原始信号与这些模态分量分割为多个时间局部片段,并计算它们对应时间局部片段的相关熵值。然后,通过LWT算法处理弱相关分量,最后重构剩余分量以完成去噪过程。实验结果表明:在5 km的传感距离和10 m的空间分辨率的条件下,系统的信噪比达到了54.36 d B,同时均方根误差降低至0.091。 展开更多
关键词 自适应噪声完备集合经验模态分解 提升小波变换 时域局部广义最大互相关熵 模态分量
在线阅读 下载PDF
基于CEEMDAN-IASO-TCN组合模型的中长期径流预报
17
作者 徐军杨 罗远林 +3 位作者 刘月馨 陈冬强 张坚 张楚 《人民长江》 北大核心 2025年第4期128-135,共8页
准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月... 准确预测月径流对流域水资源管理至关重要。为了增强中长期径流预测的准确性,提出了结合自适应噪声完备集合经验模态分解(CEEMDAN)、改进原子搜索算法(IASO)和时间卷积网络(TCN)的CEEMDAN-IASO-TCN组合模型。该模型首先使用CEEMDAN对月径流序列进行分解,然后利用IASO对TCN模型的批量大小、学习率、丢弃因子进行寻优,得到最优的时间卷积网络结构并利用最优的IASO-TCN对分量进行预测,最后重构分量预测结果得到最终月径流预测结果;以岷江流域镇江关水文站1957~2019年的月径流数据为研究对象,将所提模型与其他模型进行对比。研究结果表明:CEEMDAN-IASO-TCN模型具有较高的预测精度,训练和测试阶段的纳什系数分别达到0.9191和0.8691。研究成果可为水资源可持续利用提供可靠依据。 展开更多
关键词 中长期径流预报 自适应噪声完备集合经验模态分解 原子搜索算法 时间卷积网络 岷江流域
在线阅读 下载PDF
基于FastICA与ICEEMDAN的人脸视频心率检测 被引量:3
18
作者 赵明康 王镇 +2 位作者 齐晨成 王艺潇 张帅 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期508-512,共5页
现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、... 现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、B通道源信号,即皮肤颜色变化信号,分别求出RGB这3个颜色通道的像素平均值;然后利用FastICA对RGB这3组像素平均值进行解混,得到3组独立源信号,再用ICEEMDAN将其中一组独立源信号进行模态分解,并选取合适频段内的固有模式函数(IMF)估计心率的信号,最后用频谱分析计算得到心率。设计实验对8名人员进行了人脸视频检测,将检测结果与多参数监护仪进行对比分析。实验结果表明,该方法与多参数监护仪测量结果的平均误差与均方根误差均小于1 beat/min,因此基于FastICA与ICEEMDAN的人脸视频心率检测对人体心率检测具有良好的稳定性和准确性。 展开更多
关键词 人脸视频 非接触心率检测 光电容积脉搏波 快速独立成分分析(FastICA) 改进的自适应噪声完全集合经验模式分解(iceemdan)
在线阅读 下载PDF
A novel feature extraction method for ship-radiated noise 被引量:5
19
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise Feature extraction Classification and recognition
在线阅读 下载PDF
基于ICEEMDAN的连续梁桥车致振动信号的HHT分析 被引量:5
20
作者 邢世玲 吕双双 +1 位作者 朱利明 张佳 《西南交通大学学报》 EI CSCD 北大核心 2021年第3期477-484,492,共9页
改进的带有自适应噪声的完备集合经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)是传统经验模式分解(empirical mode decomposition,EMD)方法的发展,在桥梁结构损伤识别领域具... 改进的带有自适应噪声的完备集合经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)是传统经验模式分解(empirical mode decomposition,EMD)方法的发展,在桥梁结构损伤识别领域具有较好的应用前景.首先,以数值模拟信号为对象,采用ICEEMDAN方法进行桥梁车致动信号的数据分解和Hilbert谱分析,提取损伤引起的频谱特征变化和建立损伤识别方法;然后,利用该方法对实测振动信号的振型分量进行识别;最后,以实测信号的一阶振型分量为对象,对其Hilbert瞬时频率谱的特征进行了分析和讨论.研究结果表明:模拟信号中的振型振动分量数比实测信号中多,其中模拟信号中不显著的高阶竖弯振动分量在实测信号中没有发现;一阶振型振动分量的瞬时频率可作为桥梁损伤识别的特征参数,用于进行损伤有无、损伤定位甚至损伤定量的判断;损伤识别效果受测点位置影响很小;该方法不依赖有限元模型即可完成桥梁损伤有无的识别和损伤定位,且数据采集简单,具有实际工程中应用可行性. 展开更多
关键词 连续梁桥 改进的带有自适应噪声的完备集合经验模式分解 车致振动 Hilbert-Hang变换(HHT) 损伤识别
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部