期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于VMD和IAO-SVM的电压暂降源识别方法 被引量:17
1
作者 陈晓华 王志平 +6 位作者 吴杰康 陈盛语 许海文 孙中海 杨国荣 江剑民 陈锦涛 《广东电力》 2023年第1期59-67,共9页
针对支持向量机(support vector machine,SVM)的惩罚因子、核函数参数选择困难和天鹰优化(aquila optimizer,AO)算法在寻优时容易陷入局部最优解的问题,利用改进的天鹰优化(improved aquila optimizer,IAO)算法对SVM的惩罚因子和核函数... 针对支持向量机(support vector machine,SVM)的惩罚因子、核函数参数选择困难和天鹰优化(aquila optimizer,AO)算法在寻优时容易陷入局部最优解的问题,利用改进的天鹰优化(improved aquila optimizer,IAO)算法对SVM的惩罚因子和核函数参数进行寻优,构建IAO-SVM分类器,利用变分模态分解(variational mode decomposition,VMD)提取电压暂降源信号三相电压的特征向量,并进行归一化处理之后输入到构造好的IAO-SVM分类器中对样本进行训练与识别,并与K近邻、极限学习机、SVM和AO-SVM这4种分类器进行对比。仿真结果表明,在对8种电压暂降源信号分别加入0 dB、10 dB、20 dB、30 dB、40 dB、50 dB和60 dB的高斯白噪声情况下,IAO-SVM分类器识别的准确率分别为99.5%、94%、99.25%、100%、99.25%、98.5%和97.25%,其识别准确率最高,验证了在对信号加入不同的高斯白噪声时,IAO-SVM分类器均具有较高的识别准确率和抗噪声能力,有助于解决电压暂降源的分类问题。 展开更多
关键词 变分模态分解 改进天鹰优化算法 支持向量机 电压暂降源识别 奇异值熵 近似熵
在线阅读 下载PDF
采用混合搜索策略的阿奎拉优化算法 被引量:2
2
作者 付小朋 王勇 冯爱武 《计算机应用研究》 CSCD 北大核心 2022年第10期3026-3032,共7页
针对阿奎拉优化算法(AO)存在的不足,提出一种采用混合搜索策略的阿奎拉优化算法(HAO)。首先,利用动态调整函数平衡算法的全局探索与局部开发;其次,利用混沌自适应权重来增强算法的全局搜索能力、加快算法的收敛速度;最后,设计新的个体... 针对阿奎拉优化算法(AO)存在的不足,提出一种采用混合搜索策略的阿奎拉优化算法(HAO)。首先,利用动态调整函数平衡算法的全局探索与局部开发;其次,利用混沌自适应权重来增强算法的全局搜索能力、加快算法的收敛速度;最后,设计新的个体变异概率系数,采用改进型差分变异策略,利用适应度值较优个体引领群体中其他个体开展搜索活动,保持了种群的多样性,增强了算法跳出局部最优的能力。通过八个基准测试函数和10个CEC2019测试函数,以及一个工程应用问题的数值实验仿真对所提算法进行实验验证。实验结果表明,所提算法的全局收敛速度和优化精度均得到了明显地改善,跳出局部最优的能力得到了增强。 展开更多
关键词 阿奎拉优化算法 动态调整 混沌自适应权重 改进型差分变异
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部