针对当前各类路径优化算法搜索规模较小、收敛速度较慢、全局搜索与局部搜索不平衡等问题,提出一种多策略融合的改进灰狼优化算法(multi-strategy fusion of grey wolf optimization algorithm,MGWO)。通过引入精英反向优化策略对种群...针对当前各类路径优化算法搜索规模较小、收敛速度较慢、全局搜索与局部搜索不平衡等问题,提出一种多策略融合的改进灰狼优化算法(multi-strategy fusion of grey wolf optimization algorithm,MGWO)。通过引入精英反向优化策略对种群进行初始化,提高初始解的质量。采用自适应权重机制,动态调整最优狼的领导能力。通过分段搜索方法,提升平衡局部搜索与全局探索的能力。仿真实验结果表明:该算法表现出色,能快速找到最优路径,提高算法的整体性能,具有一定借鉴作用。展开更多
文摘针对当前各类路径优化算法搜索规模较小、收敛速度较慢、全局搜索与局部搜索不平衡等问题,提出一种多策略融合的改进灰狼优化算法(multi-strategy fusion of grey wolf optimization algorithm,MGWO)。通过引入精英反向优化策略对种群进行初始化,提高初始解的质量。采用自适应权重机制,动态调整最优狼的领导能力。通过分段搜索方法,提升平衡局部搜索与全局探索的能力。仿真实验结果表明:该算法表现出色,能快速找到最优路径,提高算法的整体性能,具有一定借鉴作用。