期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLO v5-pose的群养生猪体尺自动测量方法
1
作者
刘刚
曾雪婷
+3 位作者
刘晓文
李涛
丁向东
米阳
《农业机械学报》
北大核心
2025年第5期455-465,共11页
针对群养生猪体尺自动测量中体尺测点难以高效和精确提取的问题,提出一种基于改进YOLO v5-pose的群养生猪体尺自动测量方法。在YOLO v5-pose主干网络中融合卷积块注意力模块(Convolutional block attention module,CBAM),更好地捕捉到...
针对群养生猪体尺自动测量中体尺测点难以高效和精确提取的问题,提出一种基于改进YOLO v5-pose的群养生猪体尺自动测量方法。在YOLO v5-pose主干网络中融合卷积块注意力模块(Convolutional block attention module,CBAM),更好地捕捉到测点相关特征;将Neck层的C3传统模块替换为C3Ghost轻量模块,降低模型参数量和内存占用量;在模型Head层引入DyHead(Dynamic head)目标检测头,提升模型对测点位置的表征能力。结果表明,改进模型的测点检测平均精度均值为92.6%,参数量为6.890×10^(6),内存占用量为14.1 MB,与原始YOLO v5-pose模型相比,平均精度均值增加2.1个百分点,参数量和内存占用量分别减少2.380×10^(5)、0.4 MB。与当前经典模型YOLO v7-pose、YOLO v8-pose、RTMPose(Real-time multi-person pose estimation based on mmpose)和CenterNet相比,该模型的召回率和平均精度均值更优且更轻量化。在2400幅群养生猪图像数据集上进行试验,结果表明,该方法测得体长、体宽、臀宽、体高和臀高的平均绝对误差分别为4.61、5.87、6.03、0.49、0.46 cm,平均相对误差分别为2.69%、11.53%、12.29%、0.90%和0.76%。综上所述,本文方法提高了体尺测点检测精度,降低了模型复杂度,取得了更精确的体尺测量结果,为群养环境下生猪体尺自动测量提供了一种有效的技术手段。
展开更多
关键词
群养生猪
体尺测量
改进
yolo
v
5
-pose
关键点检测
坐标变换
在线阅读
下载PDF
职称材料
题名
基于改进YOLO v5-pose的群养生猪体尺自动测量方法
1
作者
刘刚
曾雪婷
刘晓文
李涛
丁向东
米阳
机构
中国农业大学智慧农业系统集成研究教育部重点实验室
中国农业大学农业农村部农业信息获取技术重点实验室
河南丰源和普农牧股份有限公司
中国农业大学动物科学技术学院
中国农业大学农业农村部动物遗传育种与繁殖重点实验室
出处
《农业机械学报》
北大核心
2025年第5期455-465,共11页
基金
财政部和农业农村部:国家现代农业产业技术体系项目(CARS-35)。
文摘
针对群养生猪体尺自动测量中体尺测点难以高效和精确提取的问题,提出一种基于改进YOLO v5-pose的群养生猪体尺自动测量方法。在YOLO v5-pose主干网络中融合卷积块注意力模块(Convolutional block attention module,CBAM),更好地捕捉到测点相关特征;将Neck层的C3传统模块替换为C3Ghost轻量模块,降低模型参数量和内存占用量;在模型Head层引入DyHead(Dynamic head)目标检测头,提升模型对测点位置的表征能力。结果表明,改进模型的测点检测平均精度均值为92.6%,参数量为6.890×10^(6),内存占用量为14.1 MB,与原始YOLO v5-pose模型相比,平均精度均值增加2.1个百分点,参数量和内存占用量分别减少2.380×10^(5)、0.4 MB。与当前经典模型YOLO v7-pose、YOLO v8-pose、RTMPose(Real-time multi-person pose estimation based on mmpose)和CenterNet相比,该模型的召回率和平均精度均值更优且更轻量化。在2400幅群养生猪图像数据集上进行试验,结果表明,该方法测得体长、体宽、臀宽、体高和臀高的平均绝对误差分别为4.61、5.87、6.03、0.49、0.46 cm,平均相对误差分别为2.69%、11.53%、12.29%、0.90%和0.76%。综上所述,本文方法提高了体尺测点检测精度,降低了模型复杂度,取得了更精确的体尺测量结果,为群养环境下生猪体尺自动测量提供了一种有效的技术手段。
关键词
群养生猪
体尺测量
改进
yolo
v
5
-pose
关键点检测
坐标变换
Keywords
group-raised pig
body size measurement
improved yolo v5-pose
key point detection
coordinate transformation
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLO v5-pose的群养生猪体尺自动测量方法
刘刚
曾雪婷
刘晓文
李涛
丁向东
米阳
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部