期刊文献+
共找到31,341篇文章
< 1 2 250 >
每页显示 20 50 100
Two-to-one differential game via improved MOGWO 被引量:1
1
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
Research on equation of state parameters for high-energy solid propellants based on improved cylinder test and particle swarm optimization
2
作者 Songlin Pang Xiong Chen +2 位作者 Jinsheng Xu Zongtao Guo Xinyu Cao 《Defence Technology(防务技术)》 2025年第5期152-163,共12页
With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and... With the development of high energy solid propellants,it is critical to evaluate the safety and power performance of solid propellants in the face of threats such as unmanned aerial vehicles(UAVs)when transporting and using them in contemporary warfare.An electric probe-type cylinder test measured the displacement-time behavior of NEPE high-energy solid propellant,and the parameters of the Jones-Wilkins-Lee(JWL)equation of state(EOS)were derived using particle swarm optimization(PSO)with the Gurney energy model.Further,the parameters of JWL-Miller EOS,determined through AUTODYN simulations,were validated by comparing airburst process simulations with experimental overpressure data.The study established a method for determining EOS parameters of high-energy propellants,achieving a high degree of accuracy.The derived parameters ensure precise modeling of propellant behavior,offering a reliable foundation for future applications in solid rocket motor performance optimization and safety assessment. 展开更多
关键词 improved cylinder test High-energy solid propellant PSO JWL-Miller EOS
在线阅读 下载PDF
A new damage constitutive model for rock strain softening based on an improved Logistic function
3
作者 GUO Yun-peng LIU Dong-qiao +1 位作者 YANG Sheng-kai LI Jie-yu 《Journal of Central South University》 2025年第8期3070-3094,共25页
This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening ... This study proposed a new and more flexible S-shaped rock damage evolution model from a phenomenological perspective based on an improved Logistic function to describe the characteristics of the rock strain softening and damage process.Simultaneously,it established a constitutive model capable of describing the entire process of rock pre-peak compaction and post-peak strain softening deformation,considering the nonlinear effects of the initial compaction stage of rocks,combined with damage mechanics theory and effective medium theory.In addition,this research verified the rationality of the constructed damage constitutive model using results from uniaxial and conventional triaxial compression tests on Miluo granite,yellow sandstone,mudstone,and glutenite.The results indicate that based on the improved Logistic function,the theoretical damage model accurately describes the entire evolution of damage characteristics during rock compression deformation,from maintenance through gradual onset,accelerated development to deceleration and termination,in a simple and unified expression.At the same time,the constructed constitutive model can accurately simulate the stress-strain process of different rock types under uniaxial and conventional triaxial compression,and the theoretical model curve closely aligns with experimental data.Compared to existing constitutive models,the proposed model has significant advantages.The damage model parameters a,r and β have clear physical meanings and interact competitively,where the three parameters collectively determine the shape of the theoretical stress−strain curve. 展开更多
关键词 rock mechanics strain softening improved Logistic function S-shaped model damage evolution constitutive model
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
4
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
基于优化的U-net网络掘进工作面煤岩识别方法研究 被引量:1
5
作者 栾恒杰 杨玉晴 +4 位作者 刘建康 蒋宇静 刘建荣 马德良 张孙豪 《采矿与岩层控制工程学报》 北大核心 2025年第1期94-108,共15页
为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3... 为了提高煤岩识别的精准度,采集了内蒙古上海庙矿业有限责任公司榆树井煤矿掘进工作面煤岩原始图像并制作了深度学习数据集,通过FCN全卷积神经网络(FCN网络)、Unet语义分割网络(U-net网络)与加入Canny边缘检测算法改进后的U-net网络等3种网络模型对数据集进行训练,并对训练结果进行对比分析。分析结果表明:在训练次数达到100次时,3种网络模型准确率分别为89.25%, 93.52%及94.55%,改进U-net网络模型准确率相较改进前提高1.03%;在煤岩识别方面, U-net网络模型比FCN网络模型取得了更高的准确率,在测试环节中也表现出了更好的性能;在预测环节中,对煤岩边缘部分的识别做到了更为精准的处理。该方法可为煤岩识别的精准度的提高提供参考。 展开更多
关键词 煤岩识别 深度学习 u-net网络 CANNY边缘检测算法
在线阅读 下载PDF
基于深度残差U-Net网络的海上地震混采数据分离技术研究
6
作者 梁兵 郭廷超 +2 位作者 许冲 鲍伟 潘成磊 《海洋地质前沿》 北大核心 2025年第10期28-37,共10页
随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先... 随着地震数据空间采样密度的提高,混合震源采集逐渐成为提高采集效率的有效手段之一,而对于混采数据进行有效分离是混合震源数据处理的重要一环。本文提出了一种基于残差U-Net网络的海上双源交替激发混采数据智能分离技术。该方法首先将共炮道集混采数据分选为共检波点道集数据,以此来降低非主震源激发信号的相关性,然后基于残差UNet网络实现双源混采数据的智能分离。相比传统U-Net网络,本文的网络模型增加了网络深度,并在下采样过程中引入了卷积残差模块,有效避免了梯度消失和梯度爆炸问题,提升了特征提取能力,尤其在细节问题处理上,更好地保护了有效信息。通过模型试算和实际资料处理,验证了该网络在海洋混采数据分离中的良好效果。实验结果表明,残差U-Net网络能够有效分离混采数据,且不损失有效信号,显著提高了分离结果的信噪比。研究结果可为海洋地震混采数据的高精度分离提供新思路,为后续地震资料处理奠定基础。 展开更多
关键词 混采分离 深度学习 残差u-net网络 分离精度
在线阅读 下载PDF
基于改进U-Net的城市洪涝灾害图像识别模型
7
作者 钟兴润 田晨斌 +2 位作者 李新宏 孟晓静 杨文欣 《中国安全科学学报》 北大核心 2025年第10期190-197,共8页
为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设... 为解决洪涝灾害识别模型在城市复杂背景下区域分割不清和细节还原不足等问题,提升洪涝灾害图像识别准确性,提出一种基于残差网络和自注意力机制的改进U-Net语义分割模型——AttResU-Net模型。该模型在经典U-Net网络架构基础上进行优化设计,采用深层残差网络作为编码器以增强特征表达能力,同时在解码器中引入注意力机制,以提高对关键洪涝区域的响应能力;构建完整的训练与测试流程,使用FloodNet多类别复杂环境数据集训练改进AttResU-Net模型,从定量指标和定性可视化效果2个维度来评估模型性能,并与现有主流模型进行对比分析。结果表明:AttResU-Net模型在平均像素准确率(mPA)、像素准确率(PA)、平均精度(mPrecision)等指标上表现优异,其中,mPA为79.75%、PA为90.01%、mPrecision为81.78%;相比其他模型,AttResU-Net模型在树木、水体、道路和建筑物等识别中表现出更高的分割准确率、全局像素精度和全局识别能力。 展开更多
关键词 u-net 洪涝灾害 图像识别 图像分割 注意力机制 残差
在线阅读 下载PDF
基于改进U-Net和IWOA-LSSVM的番茄综合品质检测方法研究
8
作者 施利春 边可可 +1 位作者 王松伟 王治忠 《食品与机械》 北大核心 2025年第8期109-117,共9页
[目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像... [目的]提高食品生产中番茄无损检测方法的检测精度和效率。[方法]基于番茄自动化分拣系统,提出一种融合机器视觉、多尺度残差注意力U-Net模型、改进鲸鱼优化算法和最小二乘支持向量机的番茄综合品质检测方法。通过机器视觉采集番茄图像信息;通过多尺度残差注意力U-Net模型对番茄图像进行分割,完成番茄果径参数测量;通过混沌映射和自适应收敛因子优化的鲸鱼优化算法对最小二乘支持向量机模型参数进行寻优,完成番茄硬度和番茄红素含量检测,并进行验证试验。[结果]试验方法可以实现番茄综合品质的准确、快速和无损检测。在番茄果径、硬度和番茄红素检测中均取得了较优的决定系数、均方根误差和平均检测时间,决定系数>0.960 0,均方根误差<0.012 5,平均检测时间<0.032 s。[结论]结合机器视觉、深度学习和智能算法可以实现番茄综合品质的准确、快速和无损检测。 展开更多
关键词 番茄 综合品质 无损检测 机器视觉 u-net模型 鲸鱼优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于U-Net和Transformer结合的不完整多模态脑肿瘤分割方法
9
作者 汤占军 蹇洪 王健 《数据采集与处理》 北大核心 2025年第4期934-949,共16页
由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑... 由于患者个体差异、采集协议多样性和数据损坏等因素,现有基于磁共振成像(Magnetic resonance imaging,MRI)的脑肿瘤分割方法存在模态数据丢失问题,导致分割精度不高。为此,本文提出了一种基于U-Net和Transformer结合的不完整多模态脑肿瘤分割(Incomplete multimodal brain tumor segmentation based on the combination of U-Net and Transformer,IM TransNet)方法。首先,针对脑肿瘤MRI的4个不同模态设计了单模态特定编码器,提升模型对各模态数据的表征能力。其次,在U-Net中嵌入双重注意力的Transformer模块,克服模态缺失引起的信息不完整问题,减少U-Net的长距离上下文交互和空间依赖性局限。在U-Net的跳跃连接中加入跳跃交叉注意力机制,动态关注不同层级和模态的特征,即使在模态缺失时,也能有效融合特征并进行重建。此外,针对模态缺失引起的训练不平衡问题,设计了辅助解码模块,确保模型在各种不完整模态子集上均能稳定高效地分割脑肿瘤。最后,基于公开数据集BRATS验证模型的性能。实验结果表明,本文提出的模型在增强型肿瘤、肿瘤核心和全肿瘤上的平均Dice评分分别为63.19%、76.42%和86.16%,证明了其在处理不完整多模态数据时的优越性和稳定性,为临床实践中脑肿瘤的准确、高效和可靠分割提供了一种可行的技术手段。 展开更多
关键词 注意力机制 脑肿瘤分割 多模态 u-net TRANSFORMER
在线阅读 下载PDF
融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net温室甜樱桃图像分割方法
10
作者 胡玲艳 郭睿雅 +6 位作者 郭占俊 徐国辉 盖荣丽 汪祖民 张宇萌 鞠博文 聂晓宇 《智慧农业(中英文)》 2025年第3期131-142,共12页
[目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Netw... [目的/意义]在植物表型特征提取中,面临小目标边界难以精确分割、上采样细节恢复空间信息不足等问题。提出一种融合嵌入先验距离(Priori Distance Embedding,PDE)植物时序图像对比学习方法,预训练与图卷积网络(Graph Convolutional Networks,GCN)跳跃连接的U-Net温室甜樱桃图像分割方法,借助预训练加速模型收敛,优化特征融合,为图像分割提供技术支持。[方法]将PDE植物时序图像对比学习方法的预训练权重迁移至语义分割任务;Encoder模块通过卷积-池化层执行多尺度特征提取,分层输入图像的语义信息,构建从低层纹理到高层语义的表示;利用Decoder模块进行上采样操作,融合不同尺度特征并恢复图像分辨率;Encoder和Decoder连接处,加入GCN,形成跳跃连接,使网络更容易学习多尺度图像的局部特征。[结果和讨论]从纵向消融实验和横向对比多角度进行试验,并结合准确率、召回率、F1分数等评价指标综合分析,可以验证本研究提出的融合PDE植物时序图像对比学习方法与GCN跳跃连接的U-Net在甜樱桃图像语义分割中的性能表现最佳,准确率可达0.9550。[结论]通过将PDE植物时序图像对比学习方法和GCN技术融合,构建面向植物表型分析的增强型U-Net架构。研究结果表明该方法在复杂场景下能有效解决小目标边界模糊、细节丢失等难题,实现对甜樱桃图像主要器官和背景区域的精确分割,提高原始模型的分割准度,对农业智慧化发展具有重要的实践意义。 展开更多
关键词 嵌入先验距离 迁移学习 图卷积网络 u-net 跳跃连接 植物表型
在线阅读 下载PDF
基于改进U-Net的煤矸图像分割模型与放煤控制技术
11
作者 袁永 秦正寒 +3 位作者 夏永琪 武让 李立宝 李勇 《煤炭学报》 北大核心 2025年第5期2722-2738,共17页
煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开... 煤矸识别技术是综放工作面实现智能化的关键技术之一,同时也是该领域面临的一个重要挑战。针对目前煤矸图像数据集整体质量差、数据规模小、煤矸图像分割模型检测速度慢、识别精度低等问题,参考实际综放工作面搭建了大尺寸等比例综放开采相似模拟平台,基于该平台建立了煤矸图像采集系统,采集构建了高清仿真综放工作面煤矸图像数据集,提出一种基于特征金字塔网络(FPN)和空洞空间金字塔池化(ASPP)的改进U-Net煤矸分割模型,提高了煤矸图像的分割精度。通过在U-Net模型的跳跃连接中添加FPN模块,同时在解码器部分引入ASPP模块,建立了FPN-ASPP-U-Net煤矸分割模型,消融试验验证了FPN模块和ASPP模块对U-Net模型性能的提升。结果表明:FPN-ASPP-U-Net模型分割效果最好,均准确率(M_(A))为97.29%,均F1得分(M_(F1))为97.44%,均交并比(M_(I))为95.65%,模型参数量(M_(P))为29.64 M,浮点运算量(F)为341.29 G,每秒帧数(f)为41.1 f/s,与U-Net模型相比,M_(I)、M_(F1)和M_(A)分别提升了2.64%、1.06%和1.15%,模型参数量仅仅增加了0.33 M,改进后的模型在图像分割速度上有少量提升。设计了FPN-ASPP-U-Net模型与PSPNet、SegFormer、DeepLabV3+、PSANet语义分割模型的图像分割效果对比试验,结果表明:FPN-ASPP-U-Net模型对煤矸图像分割的性能最好,同时模型整体计算参数量最小,在分割精度和分割速度之间有着较好的平衡。对于粉尘影响下的不清晰图像,采用暗通道与高斯加权相结合的方法对图像数据集进行去雾增强,轻度粉尘、中度粉尘、重度粉尘去雾前后的模型对煤的分割精度提高了14.81%、17.79%、23.62%,对矸的分割精度提高了11.73%、14.50%、14.86%。基于研究结论提出了FPN-ASPP-U-Net模型的煤矸图像混矸率计算方法,开展了煤矸图像分割控制放煤试验,以混矸率20%作为放煤口关闭的阈值,单次放煤口开关期间真实混矸率与模型预测混矸率平均误差率为4.71%,验证了基于煤矸图像混矸率对放煤控制的可行性。最后,封装模型代码研发了煤矸图像智能识别软件,设计了煤矸分割现场应用方案,在榆树田煤矿110501综放工作面进行了图像控制放煤试验,验证了该方法能够对煤矸图像进行精准分割,对放煤口开关进行合理控制,提高了综放工作面的智能化水平,为推动煤矿进一步智能化建设提供了有效的技术手段与参考价值。 展开更多
关键词 放顶煤 煤矸识别 图像分割 混矸率 u-net模型
在线阅读 下载PDF
基于多视图融合和2.5D U-Net的海马体图像分割
12
作者 陈立伟 彭逸飞 +1 位作者 余仁萍 孙源呈 《郑州大学学报(工学版)》 北大核心 2025年第5期26-34,共9页
针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增... 针对现有海马体图像自动分割方法不能很好地利用上下文信息导致分割准确率难以提高以及训练和检测过程中内存消耗大的问题,提出了一种基于多视图融合和2.5D U-Net的海马体图像分割模型MVF-2.5D U-Net。首先,模型对2D U-Net进行了改进,增加Triplet Attention模块的同时调整了网络的层深;其次,使用相邻切片组成的三通道2.5D图像代替传统的单切片输入;最后,构建了一个体积融合网络代替传统的众数投票机制。在HarP数据集上通过交叉验证的方式对网络进行了实验验证。实验结果表明:所提模型在海马体图像分割任务上的平均Dice系数和豪斯多夫距离分别为0.902和3.02,准确率和稳定性优于传统的U-Net模型和对比算法,同时适用于资源受限的环境。实验证明所提模型能够更有效地实现磁共振影像上的海马体分割。 展开更多
关键词 海马体图像分割 卷积神经网络 u-net Triplet Attention 注意力机制 体积融合网络
在线阅读 下载PDF
基于融入注意力机制的改进U-Net鲁棒焊缝识别算法 被引量:1
13
作者 周思羽 刘帅师 +1 位作者 杨宏韬 宋宜虎 《计算机集成制造系统》 北大核心 2025年第1期135-146,共12页
针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分... 针对复杂焊接环境下大量弧光噪声造成焊缝激光条纹分割精度低的问题,提出一种融入注意力机制的改进U-Net鲁棒焊缝识别算法。首先,在模型的特征融合过程中使用超强通道注意力机制实现特征的加权融合。然后,在编码器结构之后,加入特征分类结构,使其可以输出焊缝对应类型名称。最后,由于网络训练中正负样本失衡会对识别结果产生影响,在模型的损失函数中添加Dice Loss和Focal Loss来进行修正,以提高模型的鲁棒性和泛化性。另外,在模型训练的过程中提出了一种像素位置信息和图像种类信息融合的方式,以增强焊缝识别的鲁棒性。实验表明,在具有弧光、烟雾噪声等干扰环境下,所提方法得到了较好的实验结果,能够满足检测对精度和实时性的需求,在具有弧光、烟雾等干扰的实际焊接现场中具有一定的应用前景。 展开更多
关键词 焊缝识别 图像分割 注意力机制 u-net 鲁棒性
在线阅读 下载PDF
融合U-net网络的纯卷积视频预测模型 被引量:1
14
作者 谢玉枚 蔡远利 +2 位作者 高海燕 关翔锋 唐伟强 《西安交通大学学报》 北大核心 2025年第6期112-121,共10页
为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cel... 为了解决基于深度学习视频预测中存在的时空特征提取不充分以及图像细节保留不足的问题,运用简单视频预测网络模型SimVP给出的Inception单元,提出了一种融合U-net网络的纯卷积视频预测模型(CUnet)。CUnet模型由3个核心模块组成:首先,Cell模块采用2D卷积层来提取空间特征,并将这些特征输入至多个Inception单元捕获时空特性;其次,DeCell模块通过Inception单元捕获时空特征,并借助2D反卷积层进行上采样操作,恢复图像原始尺寸;最后,引入U-net作为主干网络,将Cell模块和DeCell模块有机整合,有效保留了图像的细节信息,实现了高质量的图像重建。实验结果表明:在TaxiBJ数据集上,与当前表现最佳的时间注意力单元网络模型TAU相比,CUnet模型的预测精度提高了5.23%;在Human3.6M数据集上,与当前表现最佳的快速傅里叶Inception网络模型FFINet相比,CUnet模型的预测精度提高了12.88%。CUnet模型具有优秀的预测能力,可为纯卷积神经网络模型在视频预测领域的应用提供有益探索。 展开更多
关键词 深度学习 视频预测 时空特征 u-net网络 纯卷积神经网络
在线阅读 下载PDF
改进U-net的电气设备紫外图像放电光斑分割 被引量:1
15
作者 申万科 李罗璟懿 +4 位作者 方春华 江全才 陆杰炜 夏星宇 彭万钊 《红外技术》 北大核心 2025年第6期770-778,共9页
提出了一种名为VA-Unet的语义分割模型,旨在解决传统分割方法在电气设备紫外检测任务中面临的复杂背景及小光斑分离困难、特征选取复杂、分割精准度低等问题。VA-Unet引入了VGG16特征提取模块和迁移学习,提高训练速度并增强模型泛化能力... 提出了一种名为VA-Unet的语义分割模型,旨在解决传统分割方法在电气设备紫外检测任务中面临的复杂背景及小光斑分离困难、特征选取复杂、分割精准度低等问题。VA-Unet引入了VGG16特征提取模块和迁移学习,提高训练速度并增强模型泛化能力;同时,增加了注意力门(Attention Gate)以提高模型精度,从而实现对紫外图像放电光斑的精准分割。此外,VA-Unet采用混合损失函数代替单一损失函数,解决了紫外放电光斑数据集样本不平衡的问题。实验表明,VA-Unet模型在紫外图像放电光斑的精准定位和准确分割方面表现突出,其IoU,PA,F1-score评价指标分别达到84.09%,88.20%,91.35%,相较于初始U-net网络,分别提升了14.41%,3.24%,9.22%。 展开更多
关键词 紫外检测 语义分割 u-net 迁移学习 注意力机制
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
16
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved PSO algorithm
在线阅读 下载PDF
基于U-Net和数学形态学的混凝土桥梁病害定量识别方法研究 被引量:4
17
作者 黄彩萍 田旺源 李青 《桥梁建设》 北大核心 2025年第1期64-71,共8页
为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分... 为使桥梁病害检测更加高效、客观和智能,提出一种自动识别并定量计算混凝土病害尺寸的方法。该方法采用视觉几何组网络(Visual Geometry Group Network,VGG)作为U形网络(U-Net)的主干网络,对混凝土病害(剥落、裂缝和露筋)图像进行语义分割,采用数学形态学算法对图像中的病害区域进行优化。通过MATLAB软件计算得到优化后的分割图像中病害区域像素点的数量,并利用参照物标定出图像中单个像素点的尺寸,计算得到混凝土病害的面积(或长度)。采用该方法对河南省许昌市17座现役钢筋混凝土桥梁病害图像进行语义分割实验。结果表明:U-Net能以较高的精度对复杂背景下混凝土桥梁多类病害进行像素级的分类,类别平均像素准确率为90.53%,平均交并比为80.54%。使用数学形态学对语义分割图像进行优化后,计算精度明显提高,优化后的误差绝对值为0.08%~0.21%。 展开更多
关键词 混凝土桥梁 u-net 数学形态学 语义分割 定量计算 病害识别
在线阅读 下载PDF
基于大核重参U-Net的遥感影像变化检测 被引量:1
18
作者 吴潮宇 杨斌 《计算机工程》 北大核心 2025年第3期261-273,共13页
针对现有变化检测方法在处理高精度遥感影像时存在漏检、误检及边缘检测效果差等问题,提出了一种基于大核重参U-Net的遥感影像变化检测方法,简称RepU-Net-CD。该方法以U-Net为骨干网络,在编码端用大核重参模块代替单卷积核结构进行特征... 针对现有变化检测方法在处理高精度遥感影像时存在漏检、误检及边缘检测效果差等问题,提出了一种基于大核重参U-Net的遥感影像变化检测方法,简称RepU-Net-CD。该方法以U-Net为骨干网络,在编码端用大核重参模块代替单卷积核结构进行特征提取,实现注意力机制的全局感受野。同时,该方法利用重参技术将小核融合进大核结构中辅助训练,使网络保留捕获小感受野中细节特征的能力,从而生成多尺度特征,提高变化检测精度。在网络解码端将不同时相的特征图进行融合,得到特征差分图,再通过跳跃连接和上采样得到变化特征图,最后利用特征边缘增强模块提高网络对特征图的边缘信息关注度,进一步提高检测精度后,生成变化结果。此外,针对数据集客观存在的正负训练样本不平衡问题,采用有更高鲁棒性的混合损失函数进行网络训练。本文方法在LEVIR-CD和WHU-CD两个主流的公开数据集上进行实验验证,并与其他最新的遥感变化检测方法进行了对比。实验结果表明本文方法在许多评估指标上有显著改进,这两个数据集上的F1值分别提高到91.71%和92.60%,交并比(IoU)分别提高到84.69%和86.20%。 展开更多
关键词 变化检测 结构重参化 边缘增强 遥感影像 u-net
在线阅读 下载PDF
基于U-Net网络和对极几何的介入导管空间形状重建方法 被引量:1
19
作者 王康 何彦霖 +2 位作者 黄宇辰 魏聚群 娄小平 《仪器仪表学报》 北大核心 2025年第1期147-156,共10页
介入手术是治疗心血管疾病的主要方式之一,现有手术主要依靠二维荧光透视图像指导医生操作,无法实现术中介入导管的三维可视化,限制了手术效率和安全性。面向心血管介入手术临床精准治疗的需求,提出一种基于U-Net网络和对极几何的介入... 介入手术是治疗心血管疾病的主要方式之一,现有手术主要依靠二维荧光透视图像指导医生操作,无法实现术中介入导管的三维可视化,限制了手术效率和安全性。面向心血管介入手术临床精准治疗的需求,提出一种基于U-Net网络和对极几何的介入手术导管空间形状重建方法,实现术中介入手术导管三维形状的重建。首先利用U-Net网络分割出双平面荧光透视图像中导管的轮廓,并通过骨架化算法提取出导管的中心线。接着研究了基于对极几何约束的立体视觉匹配方法,通过求解极线与导管中心线的交点,求解出双平面投影中导管点集的对应关系,并结合投影模型与导管中心线构造空间射线,通过逐个求解空间射线的相交点,将空间曲线重建问题转换成射线相交问题,实现导管三维空间形状的精确重建。最后,为验证所提出介入手术导管空间形状重建算法的可行性,进行了双平面透视图像重建导管实验,结果显示导管的最大形状重建误差<1.55 mm,均方误差<0.89 mm,豪斯多夫距离不足1.49 mm。表明所提出方法可实现介入手术导管三维形状的精确重建,为提升血管介入手术精准导航和柔性导丝安全操控提供新方法和技术基础。 展开更多
关键词 荧光透视图像 介入手术导管 形状重建 u-net 对极几何
在线阅读 下载PDF
UMTransNet:结合U-Net和多尺度感知Transformer的图像拼接定位方法 被引量:1
20
作者 张维 何月顺 +3 位作者 谢浩浩 杨安博 杨超文 吕熊 《现代电子技术》 北大核心 2025年第1期33-39,共7页
当前基于深度学习的图像拼接定位方法大多只关注深层次特征,且感受野有限,忽略了浅层次特征,影响图像拼接定位的准确性。针对上述问题,文中提出一种结合改进U-Net和多尺度多视角Transformer的图像拼接定位网络UMTransNet。改进U-Net模... 当前基于深度学习的图像拼接定位方法大多只关注深层次特征,且感受野有限,忽略了浅层次特征,影响图像拼接定位的准确性。针对上述问题,文中提出一种结合改进U-Net和多尺度多视角Transformer的图像拼接定位网络UMTransNet。改进U-Net模型的编码器,将编码器中的最大池化层替换成卷积层,防止浅层次特征的流失;将多尺度多视角Transformer嵌入到U-Net的跳跃连接中,Transformer的输出特征与U-Net的上采样特征进行有效融合,实现深层次特征与浅层次特征的平衡,从而提高图像拼接定位的准确性。通过可视化检测结果图显示,所提方法在定位拼接篡改区域方面表现得更加出色。 展开更多
关键词 数字图像取证 图像拼接定位 u-net 多尺度感知 自注意力机制 交叉注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部