期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
基于SVD-IACMD的GIS振动信号去噪算法 被引量:3
1
作者 涂嘉毅 关向雨 +2 位作者 赵俊义 林建港 赖泽楷 《电力工程技术》 北大核心 2024年第6期163-172,共10页
振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇... 振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇异值分解(singular value decomposition,SVD)-改进自适应啁啾模态分解(improve adaptive chirp mode decomposition,IACMD)的现场振动信号降噪算法。该方法首先利用SVD对原始振动信号进行预处理,滤除低频基础振动和测量噪声,其次利用鱼鹰优化算法(osprey optimization algorithm,OOA)对处理后的信号进行自适应模态分解,得到分解后的固有模态(intrinsic mode functions,IMF)分量,再利用互相关系数筛选有效分量重构振动信号。模拟信号与现场信号测试结果表明:与OOA-自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和SVD-变分模态分解(variational mode decomposition,VMD)相比,所提出的SVD-IACMD算法可以去除基础振动、测量噪声和环境噪声,保留GIS本体振动的基频和谐波分量,为GIS现场抗干扰振动检测和机械缺陷诊断提供技术支持。 展开更多
关键词 气体绝缘开关设备(GIS) 信号降噪 奇异值分解(SVD) 改进自适应啁啾模态分解(iacmd) 鱼鹰优化算法(OOA) 机械振动
在线阅读 下载PDF
基于数据驱动自适应变分非线性chirp模态分解的瞬时频率识别
2
作者 袁平平 满镇 +1 位作者 赵周杰 任伟新 《振动与冲击》 EI CSCD 北大核心 2024年第20期18-25,共8页
为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode d... 为降低初始频率和信号噪声对变分非线性chirp模态分解(variational nonlinear chirp mode decomposition,VNCMD)的影响,提出了一种基于数据驱动自适应变分非线性chirp模态分解(data-driven adaptive variational nonlinear chirp mode decomposition,DDAVNCMD)的方法。通过模态能量占比确定响应信号的模态个数,同时采用导数归一化算法初步估算模态分量的初始频率,并添加迭代时变滤波器来降低噪声的影响,在此基础上再对响应信号进行VNCMD。通过单分量和多分量解析信号及拉索结构试验对所提方法进行验证。研究结果表明,基于DDAVNCMD的瞬时频率识别方法具有较好的准确性和抗噪性。 展开更多
关键词 瞬时频率 变分非线性chirp模态分解(VNCMD) 导数归一化 迭代时变滤波器 数据驱动自适应变分非线性chirp模态分解(DDAVNCMD)
在线阅读 下载PDF
基于ICEEMDAN的微电网混合储能容量配置 被引量:1
3
作者 刘旭民 张彦 刘晓波 《南方电网技术》 北大核心 2025年第1期140-149,共10页
针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中... 针对改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)的微电网混合储能系统(hybrid energy storage system,HESS)容量优化配置方法,以解决并网型微电网中可再生能源出力和用电负荷波动导致的联络线功率波动问题。该方法通过对微电网中不平衡功率进行功率信号分解,并分析确定高频分量和低频分量,实现功率信号重构。针对不同储能系统技术特点,采用钠硫电池平抑低频分量,采用超级电容平抑高频分量。然后,通过建立以储能初始投资和维护成本最小为目标的HESS容量优化配置模型,利用商业求解器GUROBI求解混合储能配置方案。基于某并网型微电网进行算例分析,结果表明配置HESS能有效平抑微电网联络线功率波动,且该方法具有较好的经济性。算例分析结果验证了所提方法的有效性和可行性。 展开更多
关键词 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 微电网 混合储能 容量优化配置 GUROBI
在线阅读 下载PDF
基于ICEEMDAN算法的高速双圆弧斜齿轮泵振动试验特性分析
4
作者 董庆伟 李博 +2 位作者 李阁强 韩帅康 皇甫科维 《机床与液压》 北大核心 2025年第4期151-157,共7页
针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分... 针对双圆弧斜齿轮泵高速工况下引起的振动问题,以过渡曲线为正弦曲线的双圆弧斜齿轮泵为研究对象,搭建液压工作站,以转速与压力负载为变量,采集不同转速与压力负载下泵的进油口、出油口与泵体上侧的振动信号,然后对数据进行时、频域分析。在此基础上,基于增强型完全集合经验模态分解(ICEEMDAN)算法对数据进行特征提取,通过模糊熵与峭度构建的综合指标选取内在模态函数分量(IMF)进行分析,得到双圆弧斜齿轮泵在不同转速和压力负载工况下的振动特性。结果表明:在所测工况下,出油口区域的振动幅度普遍高于进油口和泵体上侧区域,而且压力负载对泵的振动分布具有一定影响;在恒定压力负载下,泵的振动幅值随转速的提高而增加,且这种增长随转速的提高而加剧;在恒定转速下,泵的振动幅度整体趋势随着压力负载的增加而上升,但在特定压力负载点出现下降。 展开更多
关键词 斜齿轮泵 高速工况 振动特性 增强型完全集合经验模态分解(ICEEMDAN)算法
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
5
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小波变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
基于参数优化的ICEEMDAN滚动轴承故障诊断
6
作者 李雨晴 马洁 《机床与液压》 北大核心 2025年第6期21-27,共7页
滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CP... 滚动轴承长期处于噪声污染的工作环境中,其故障诊断常受到噪声干扰,难以对故障特征信息进行有效提取。针对此问题,提出基于冠豪猪优化算法(CPO)的改进自适应噪声完备经验模式分解(ICEEMDAN)联合卷积神经网络(CNN)的故障诊断方法。通过CPO对ICEEMDAN的白噪声幅值权重及噪声添加次数进行参数寻优,将最优参数返回并进行信号分解,以最小包络熵作为相关度函数,筛选出相关程度高的特征模态分量(IMF);将重构的有效特征分量IMF转化为特征向量并输入到CNN模型中,从而实现轴承的故障诊断。与已有模型进行对比,结果表明:该方法具有较强的泛化能力,诊断精度明显优于现有方法,并且具有更高的诊断效率。 展开更多
关键词 故障诊断 冠豪猪优化算法(CPO) 改进自适应噪声完备经验模式分解(ICEEMDAN) 卷积神经网络(CNN)
在线阅读 下载PDF
基于CEEMDAN-SAOA的平抑风电波动混合储能系统定容优化配置
7
作者 黄冬梅 吴冰 +3 位作者 时帅 李媛媛 宋巍 王晓亮 《电力系统保护与控制》 北大核心 2025年第15期59-70,共12页
为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法... 为解决风力发电直接并网所产生的功率波动问题,提出了一种基于改进阿基米德优化算法融合自适应噪声完全集合经验模态分解(complete ensemble EMD with adaptive noise,CEEMDAN)的容量配置方法。采用由限幅与滑动平均结合的加权滤波算法平滑风电出力,同时减小平滑结果的滞后性,得到风电并网功率和混合储能系统(hybrid energy storage system,HESS)参考功率。为了合理分配HESS的内部功率,借助CEEMDAN分解HESS的参考功率,得到高低频分量。综合考虑HESS功率和容量、荷电状态(state of charge,SOC)与负荷缺点率等因素,构建以年综合成本最小为目标的容量优化配置模型并采用改进阿基米德优化算法求解。基于实际算例进行仿真分析,结果表明,与原始风电并网相比,HESS配置方案将波动率减少了13.538%,平滑度提高了16.057%。相较于传统单一储能平抑效果更加明显,减少了容量配置。同时,对比传统阿基米德优化算法节省了15.325%的投资成本。 展开更多
关键词 改进阿基米德算法 自适应噪声完全集合经验模态分解 风力发电 平抑功率波动 混合储能 容量配置
在线阅读 下载PDF
基于改进EMD和ARMA的MEMS陀螺仪随机误差补偿方法 被引量:3
8
作者 曾鑫 先苏杰 +2 位作者 王康 司鹏 吴志林 《兵工学报》 EI CAS CSCD 北大核心 2024年第9期3297-3306,共10页
微机电系统(Micro-Electro-Mechanical System,MEMS)陀螺仪的随机误差限制了其测量精度。为了降低MEMS陀螺仪的随机误差,提出一种基于改进的经验模态分解(Empirical Mode Decomposition,EMD)和优化的自回归滑动平均(Autoregressive Movi... 微机电系统(Micro-Electro-Mechanical System,MEMS)陀螺仪的随机误差限制了其测量精度。为了降低MEMS陀螺仪的随机误差,提出一种基于改进的经验模态分解(Empirical Mode Decomposition,EMD)和优化的自回归滑动平均(Autoregressive Moving Average,ARMA)模型的方法。该方法在传统EMD的基础上,结合Hausdorff距离和累积标准化模态均值以提取信号中的噪声和趋势项,对剩余信号进行ARMA建模和滤波。采用沙猫群优化算法优化建模的定阶过程,采用改进的自适应滤波补偿随机误差。试验结果表明:相较于传统EMD和传统ARMA方法,新方法在静态试验中得到的均方根误差分别降低52.5%和34.4%,在动态试验中得到的均方根误差分别降低50%和32.35%;新方法有效抑制了随机误差,提升了MEMS陀螺仪的使用精度。 展开更多
关键词 微机电系统 陀螺仪 改进经验模态分解 时间序列建模 HAUSDORFF距离 自适应滤波
在线阅读 下载PDF
基于多分量LFM信号时频分析的水声多普勒和时延估计研究 被引量:1
9
作者 宁更新 肖若君 谢靓 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期688-696,共9页
在水声多普勒因子和时延估计研究实用化的进程中,利用多分量线性调频(LFM)信号实现估计的算法研究越来越普遍。针对多分量LFM信号时频域存有交叉项时各分量参数估计不准确的问题,提出基于非完全残差与脊线段匹配的自适应模态分解方法。... 在水声多普勒因子和时延估计研究实用化的进程中,利用多分量线性调频(LFM)信号实现估计的算法研究越来越普遍。针对多分量LFM信号时频域存有交叉项时各分量参数估计不准确的问题,提出基于非完全残差与脊线段匹配的自适应模态分解方法。该方法采用非完全残差函数保留了交叉点处的部分时频信息,利用脊线段匹配方法提供更精确的预设时频脊线,改进了各分量LFM信号调频斜率和起始频率的估计精度。联合两个估计量进一步给出了多普勒因子和时延估计的算法。仿真结果表示,较现有模态分解算法,所提改进方法有效解决了估计分量过程中交叉区间断裂带来的估计误差;水声多径的条件下,该方法的多普勒因子和时延估计精度优于对比的现有方法。 展开更多
关键词 时频分析 多普勒因子 时延估计 多分量LFM信号 自适应模态分解
在线阅读 下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法 被引量:2
10
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备集合经验模态分解 分布熵 信噪比
在线阅读 下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
11
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
在线阅读 下载PDF
两级自适应调频模式分解-同步提取变换的故障诊断方法 被引量:1
12
作者 葛丽英 李志农 +2 位作者 胡志峰 毛清华 张旭辉 《噪声与振动控制》 CSCD 北大核心 2024年第2期88-94,155,共8页
同步提取变换(Synchroextracting Transform,SET)处理强干扰信号分量时缺乏自适应性而易发生频率模糊,导致难以精确提取快速波动的瞬时频率。针对此问题,结合自适应调频模式分解(Adaptive Chirp Mode Decomposition,ACMD)的自适应先验... 同步提取变换(Synchroextracting Transform,SET)处理强干扰信号分量时缺乏自适应性而易发生频率模糊,导致难以精确提取快速波动的瞬时频率。针对此问题,结合自适应调频模式分解(Adaptive Chirp Mode Decomposition,ACMD)的自适应先验信息和贪婪算法的优势,将ACMD引入到SET中,构造一种两级ACMD-SET故障诊断方法。在提出的方法中,将基于基尼指数(Gini Index,GI)最大化准则的分量选择重组算法和第一级ACMD结合,提取出强干扰下的多模态故障脉冲信号的模式。然后,利用SET对第二级ACMD分离出的时变频率故障特征进行高精度的时频表示。将此方法应用到仿真调频-调幅信号中,得到高分辨率的故障特征,方法的有效性得到验证。最后,将所提方法应用于航空发动机高速滚动轴承的振动信号分析中,结果表明,所提方法能有效地提取高速滚动轴承振动信号的时变故障特征频率,其结果明显优于SET方法。 展开更多
关键词 故障诊断 同步提取变换 自适应调频模态分解 滚动轴承
在线阅读 下载PDF
基于波浪激励响应自适应变分模态分解的高桩码头桩基损伤识别 被引量:1
13
作者 王泊淳 王启明 +1 位作者 朱瑞虎 李成明 《振动与冲击》 EI CSCD 北大核心 2024年第21期147-155,221,共10页
波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱... 波浪激励下高桩码头桩基动力响应存在多类型信号混杂现象,因此信号重构对于码头桩基的损伤检测至关重要。变分模态分解(variational mode decomposition,VMD)方法能够有效避免信号重构中的模态混叠问题,但由于波浪激励下的动力响应频谱复杂,分解所需的模态数和罚因子会严重影响分解结果。为解决该问题,提出了一种自适应变分模态分解方法(improved adaptive variational mode decomposition,IAVMD),该方法通过罚权系数自适应调整各频率分量的罚因子,并通过分解结果的信号完整度来确定最佳模态数。进一步通过波浪激励下的高桩码头模型试验对IAVMD的有效性、适用性进行了验证。结果表明,该方法能够准确分离出动力响应损伤特征子信号,并根据能量因子确定损伤位置和大小。 展开更多
关键词 波浪激励 损伤检测 信号重构 自适应变分模态分解(IAVMD)
在线阅读 下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究 被引量:4
14
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEEMDAN) 多尺度排列熵 信号降噪
在线阅读 下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:3
15
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
在线阅读 下载PDF
基于ICEEMDAN与POA-SVM的感应电机故障诊断 被引量:2
16
作者 刘满强 吴杰 《现代制造工程》 CSCD 北大核心 2024年第5期127-137,共11页
针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机... 针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机故障诊断方法。首先,利用ICEEMDAN经陷波器滤除工频的定子电流获得一系列固有模态函数(IMF);然后,选取各状态信号的前7阶IMF分量并计算能量熵作为故障特征向量;最后,将故障特征向量输入POA-SVM模型得到诊断结果。通过仿真软件Ansoft/Maxwell建立电机模型来获得电流数据,诊断准确率达到了100%,实现了感应电机的故障诊断。为进一步验证诊断方法的优越性,搭建电机故障模拟试验台来采集电流信号,结果表明,该方法在空载、半载和满载3种负载情况下诊断准确率均可达到97.5%以上,与其他故障诊断方法相比,所提方法对感应电机电气故障具有更好的识别能力。 展开更多
关键词 改进自适应噪声平均总体经验模态分解 鹈鹕优化算法 支持向量机 感应电机 故障诊断
在线阅读 下载PDF
基于ICEEMDAN分解重构的BiLSTM-KELM短期电力负荷预测 被引量:1
17
作者 王晨 李又轩 +2 位作者 王淑侠 邬蓉蓉 吴其琦 《科学技术与工程》 北大核心 2024年第32期13836-13843,共8页
短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分... 短期电力负荷预测在维持电力系统稳定运行、优化资源配置中发挥着至关重要的作用。针对电力负荷数据的复杂性和随机性以及现有预测模型的低精度问题,提出了一种新型的短期电力负荷预测模型。该模型包括改进的自适应噪声完备集经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)和排列熵(permutation entropy,PE)重构部分,以及双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)与核极限学习(kernel extreme learning machine,KELM)预测部分。首先,使用ICEEMDAN将复杂的负荷数据分解成n个相对平稳的子序列,从而降低数据的随机性,并引入排列熵来计算每个子序列的PE值来进行重构,有效减小了模型的计算规模。其次,采用BiLSTM模型来挖掘数据之间的内在联系,对各个重构序列进行学习和预测。最后,利用KELM对重构序列的预测值进行非线性拟合,进一步提高预测精度。实验结果表明:ICEEMDAN-PE-BiLSTM-KELM模型比传统长短期记忆神经网络(long short-term memory,LSTM)模型的均方根误差(root mean square error,RMSE)降低了106.05 MW,平均绝对误差(mean absolute error,MAE)降低了62.34 MW,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了0.877%,可见该模型能够更好地解决数据的复杂性和随机性,同时提高预测精度。 展开更多
关键词 短期电力负荷预测 改进的自适应噪声完备集经验模态分解(ICEEMDAN) 排列熵(PE) 双向长短期记忆神经网络(BiLSTM) 核极限学习(KELM)
在线阅读 下载PDF
深孔台阶爆破近区振动信号预处理与时频特征分析
18
作者 张文涛 汪海波 +4 位作者 高朋飞 王梦想 杨帆 吕闹 宗琦 《振动与冲击》 EI CSCD 北大核心 2024年第24期178-189,共12页
深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,... 深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了改进的自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)算法结合基于广义最小最大非凸(generalized minimax concave, GMC)惩罚项的稀疏降噪法与稀疏化基线估计消噪(baseline estimation and de-noising with sparsity, BEADS)算法的联合预处理方法。通过仿真信号验证该方法的可行性。将其应用于实际深孔台阶爆破近区振动信号的处理,并提取重构信号的时频特征,结果表明:在仿真信号试验中,该文构建的预处理方法能在有效保留信号真实成分的前提下消除高频噪声和低频趋势项的影响,相较于其他5种方法重构信号信噪比更高、均方根误差更小。在实测信号分析中,预处理后信号波形恢复正常,高频噪声成分被抑制,低频段频谱更清晰。时频特征分析发现,深孔台阶爆破近区振动信号主频较低,能量主要集中在25~150 Hz范围内,极低频和高频能量占比较少。根据时频特征分析结果结合爆破安全规程对爆破参数设计给出了建议。研究结果对爆破振动信号精确分析及制定爆破振动控制措施具有重要意义。 展开更多
关键词 爆破近区振动信号 预处理 时频分析 改进的自适应噪声完备集合经验模态分解(ICEEMDAN) 基于广义最小最大非凸(GMC)惩罚项的稀疏降噪法 稀疏化基线估计消噪(BEADS)
在线阅读 下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
19
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(ICEEMDAN) 共振解调 快速峭度图 形态学滤波
在线阅读 下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
20
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部