An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditio...An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.展开更多
In this paper two implicit 2-step hybrid methods are proposed! one has order five, the other six. The stability properties of the methods are analysed. The 5th order method is proved to be A-stable and the 6th order o...In this paper two implicit 2-step hybrid methods are proposed! one has order five, the other six. The stability properties of the methods are analysed. The 5th order method is proved to be A-stable and the 6th order one is not, but still has a relatively large region of absolute stability. The implementation of the 5th order method is also discussed.展开更多
A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is pr...A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.展开更多
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
In this paper, a rather general class of explicit parallel multistep Runge-Kutta methods is constructed for solving initial value problem of ordinary differential equations. Also, the corresponding convergence and sta...In this paper, a rather general class of explicit parallel multistep Runge-Kutta methods is constructed for solving initial value problem of ordinary differential equations. Also, the corresponding convergence and stability are analysed. Several parallel computational formulae are given. The numerical experiments, including accuracy, speedup, and efficiency tests show that the methods are efficient.展开更多
文摘An idea of relaxing the effect of delay when computing the Runge-Kutta stages in the current step and a class of two-step continuity Runge-Kutta methods (TSCRK) is presented. Their construction, their order conditions and their convergence are studied. The two-step continuity Runge-Kutta methods possess good numerical stability properties and higher stage-order, and keep the explicit process of computing the Runge-Kutta stages. The numerical experiments show that the TSCRK methods are efficient.
文摘In this paper two implicit 2-step hybrid methods are proposed! one has order five, the other six. The stability properties of the methods are analysed. The 5th order method is proved to be A-stable and the 6th order one is not, but still has a relatively large region of absolute stability. The implementation of the 5th order method is also discussed.
基金Project supported by the National Natural Science Foundation of China
文摘A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.
文摘In this paper, a rather general class of explicit parallel multistep Runge-Kutta methods is constructed for solving initial value problem of ordinary differential equations. Also, the corresponding convergence and stability are analysed. Several parallel computational formulae are given. The numerical experiments, including accuracy, speedup, and efficiency tests show that the methods are efficient.