边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Ser...边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Service,QoS)的需求。因此本文提出了一种基于生成对抗网络(Generative Adversarial Network,GAN)增强的多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的边缘推理与异构资源协同优化方法,以实现数字孪生(Digital Twin,DT)驱动的边缘侧大模型赋能系统中异构资源的动态负载均衡,确保推理任务高效性与可靠性。首先,本文构建并分析了DT驱动的边缘侧大模型系统中的物理网络层和孪生网络层,并采用GAN实现对物理实体的孪生映射,从而对海量异构边缘数据进行分布式处理、生成与优化。接着,利用MADRL算法来对系统中的异构资源进行综合量化与协同优化,并将边缘推理数据反馈至MADRL算法中以减少集中式训练过程中的数据通信开销。同时,借助于联邦学习,该架构能够实现多方知识共享,从而有效提升模型训练速度与性能。最后,仿真结果表明,该算法能够在动态复杂大模型赋能边缘系统环境中有效降低推理任务的时延和能耗,充分利用有限的系统资源,确保推理任务的高效性,并提升智能服务的质量。展开更多
文摘边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Service,QoS)的需求。因此本文提出了一种基于生成对抗网络(Generative Adversarial Network,GAN)增强的多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的边缘推理与异构资源协同优化方法,以实现数字孪生(Digital Twin,DT)驱动的边缘侧大模型赋能系统中异构资源的动态负载均衡,确保推理任务高效性与可靠性。首先,本文构建并分析了DT驱动的边缘侧大模型系统中的物理网络层和孪生网络层,并采用GAN实现对物理实体的孪生映射,从而对海量异构边缘数据进行分布式处理、生成与优化。接着,利用MADRL算法来对系统中的异构资源进行综合量化与协同优化,并将边缘推理数据反馈至MADRL算法中以减少集中式训练过程中的数据通信开销。同时,借助于联邦学习,该架构能够实现多方知识共享,从而有效提升模型训练速度与性能。最后,仿真结果表明,该算法能够在动态复杂大模型赋能边缘系统环境中有效降低推理任务的时延和能耗,充分利用有限的系统资源,确保推理任务的高效性,并提升智能服务的质量。
基金国家自然科学基金资助项目(12004275)Shanxi Scholarship Council of China(2020-042)山西省自然科学基金资助项目(20210302123186)。
文摘【目的】为了更精准地预测5G基站的流量,分析潮汐现象,提出一种优化的生成对抗网络(generative adversarial network,GAN)模型流量预测方法,并将其用于实际基站的定时控制中。【方法】GAN的生成器利用差分演化灰狼算法优化长短时记忆网络(long short term memory networks,LSTM),判别器使用门控循环神经网络(gated recurrent unit,GRU)进行判别,生成器和判别器利用不断地对抗训练达到均衡从而提高了5G基站流量的预测精度;其次,利用改进人工蜂群优化k-means++算法,将其用于输出最优基站定时时间,达到最大限度节能的目的。【结果】实验结果表明,与现有模型相比,所提预测模型有更高的预测精度,定时控制功能可极大地节约能耗。