期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells 被引量:1
1
作者 BAI Yuanqing ZHANG Jiabin +3 位作者 LIU Chunchen HU Zhicheng ZHANG Kai HUANG Fei 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2023年第9期242-252,共11页
Two polymer donor materials,namely pBDT-BTI-EH and pBDT-BTI-ME,were synthesized by copoly-merizing benzodithiophene(BDT)unit with bithiophene imide(BTI)unit containing 2-ethylhexyl and methyl alkyl side chains,respect... Two polymer donor materials,namely pBDT-BTI-EH and pBDT-BTI-ME,were synthesized by copoly-merizing benzodithiophene(BDT)unit with bithiophene imide(BTI)unit containing 2-ethylhexyl and methyl alkyl side chains,respectively.Compared to pBDT-BTI-EH∶Y6 based organic solar cells(OSCs),the pBDT-BTI-ME∶Y6-based device exhibited higher charge mobilities,reduced charge recombination,more efficient exciton dissociation,and favorable film morphology,which leaded to increased short current density(Jsc),fill factor(FF)and thus a significant improvement in power conversion efficiency(PCE)from 9.31%to 15.69%. 展开更多
关键词 Organic solar cell Polymer donor Bithiophene imide Alkyl chain engineering
在线阅读 下载PDF
Synthesis and crystal structure characterization of yttrium imido complex:The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex
2
作者 GUO Liping 《无机化学学报》 北大核心 2025年第7期1409-1415,共7页
2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(... 2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a. 展开更多
关键词 yttrium imide O-CARBORANE synthesis structure characterization
在线阅读 下载PDF
Isomeric fluorescence sensors for wide range detection of ionizing radiations
3
作者 Jimin Han Tianyu Yang +1 位作者 Li Yang Yuanjian Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期247-257,共11页
In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduce... In order to achieve a wider range of ionizing radiations detection,novel fluorescence sensing materials have been developed that utilize the fluorescence enhancement phenomenon caused by the intramolecular photoinduced electron transfer(PET)effect.Two perylene diimide isomers PDI-P and PDI-B were designed and synthesized,and their molecular structures were characterized by high-resolution Fourier transform mass spectrometry(HRMS),nuclear magnetic resonance hydrogen and carbon spectroscopy(~1H and~(13)C NMR).The interaction between ionizing radiation and fluorescent molecules was simulated by HCl titration.The results show that combining PDIs and HCl can improve fluorescence through the retro-PET process.Despite the similarities in chemical structures,the fluorescent enhancement multiple of PDI-B with aromatic amine as electron donor is much higher than that of PDI-P with alkyl amine.In the direct irradiation experiments of ionizing radiation,the emission enhancement multiples of PDI-P and PDI-B are 2.01 and 45.4,respectively.Furthermore,density functional theory(DFT)and time-dependent density functional theory(TDDFT)calculations indicate that the HOMO and HOMO-1 energy ranges of PDI-P and PDI-B are 0.54 e V and 1.13 e V,respectively.A wider energy range has a stronger driving force on electrons,which is conducive to fluorescence quenching.Both femtosecond transient absorption spectroscopy(fs-TAS)and transient fluorescence spectroscopy(TFS)tests show that PDI-B has shorter charge separation lifetime and higher electron transfer rate constant.Although both isomers can significantly reduce LOD during PET process,PDI-B with aromatic amine has a wider detection range of 0.118—240 Gy due to its larger emission enhancement,which is a leap of three orders of magnitude.It breaks through the detection range of gamma radiation reported in existing studies,and provides theoretical support for the further study of sensitive and effective new materials for ionizing radiation detection. 展开更多
关键词 Perylene imide Intramolecular PET Ionizing radiation detection Fluorescence sensor ISOMERS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部