A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement t...A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the st...Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.展开更多
为研究层状复合岩石破坏过程和形态,采用相似理论制作出层状复合岩石相似模型,在单轴压缩条件下观测岩石的破坏特征,结合三维数字图像相关技术(3D digital image correlation,DIC)对试件的整体变形及破坏进行全过程的观测,得到复合岩石...为研究层状复合岩石破坏过程和形态,采用相似理论制作出层状复合岩石相似模型,在单轴压缩条件下观测岩石的破坏特征,结合三维数字图像相关技术(3D digital image correlation,DIC)对试件的整体变形及破坏进行全过程的观测,得到复合岩石三维场的位移和应变,同时基于试件表面应变场的变化,建立了表面损伤程度与损伤因子D之间的量化关系,进而得到基于DIC表征的层状复合岩石损伤演化模型,研究结果表明:层状复合岩石的破坏形态与脆性岩石特征相似,以拉伸劈裂破坏和Y型剪切破坏为主;DIC试验记录的表面应变与损伤因子之间的量化关系可有效反映岩石破坏的全过程,以此为基础建立的损伤演化方程与实验数据拟合效果较好,证明了模型的合理性。展开更多
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ...The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.展开更多
Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on tr...Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on triple-pillar marble specimens.The acoustic emission(AE)and digital image correlation(DIC)were jointly applied to monitoring and recording damage evolution and failure behavior of each pillar,which reproduced the cataclysmic instability process of underground pillar groups.Experimental results indicated that the cyclic amplitude exceeding the threshold of damage initiation weakened the resistance to deformation,resulting in obvious release of dissipated energy and the reduction of bearing capacity.Conversely,after low-amplitude cyclic loading,both the pre-peak bearing capacity and the post-peak ductility of the pillar system increased due to the compaction of initial defects,indicating that the peak bearing capacity was closely related to the extent of pre-peak fatigue damage.The axial strain of each pillar was measured by DIC virtual extensometer to present the damage extent during cyclic loading phase.Meanwhile,fracture evolution of typical load drop points was also characterized by transverse strain fields(εxx),and observations showed that the damage extent of key pillar undergoing high-amplitude cyclic loads was more serious and violent,accompanied by the ejection of rock debris and loud noises.展开更多
The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although vari...The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.展开更多
It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermi...It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter- ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo- dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for- mation procedure.展开更多
Thin layer chromatography(TLC) of cobalt and nickel has been performed on silica gel layers induced with alkali mediated cellulose extract.A novel combination of 10% aqueous solutions of Tween-20 and potassium thiocya...Thin layer chromatography(TLC) of cobalt and nickel has been performed on silica gel layers induced with alkali mediated cellulose extract.A novel combination of 10% aqueous solutions of Tween-20 and potassium thiocyanate in 1∶1(v/v) was identified as the best mobile phase for the selective separation of Co2+from Ni2+on the impregnated Silica Gel G layers.The chromatographic characteristics of the cations were studied and the limits of detection as well as the limits of quantification for Co2+and Ni2+were determined.The quantitative estimation of the cations was achieved from the digital image analysis of respective chromatograms.The proposed quantitative method was successfully applied with 0-0.50% error for the determination of Co2+from Ni2+in spiked samples of bauxite,soil and rock containing common cations such as Al3+,Fe2+,Ti4+,Zn2+,Mn2+,Cu2+,Cr6+,Mg2+,etc.under the optimized chromatographic conditions.展开更多
A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was...A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.展开更多
Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studi...Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studied as potential energy absorbers due to their ability to fail progressively under axial compression.In this study,the energy absorption capability of these tubes is enhanced by adding hollow glass particles to the matrix.Drop-weight tests are performed on composite tubes,and a digital image correlation(DIC)-based technique is used to capture their load-displacement behaviour.This eliminates the use of electronic data acquisition systems,load cells,and accelerometers.The load-displacement curves of the tubes are obtained from the DIC-based technique and examined to understand their crushing behaviour.Although the mean crush load shows a drop,an increase in crush length is noticed.The specific energy absorbed by the tubes improves with an increase in GMB volume fraction.The addition of 0.1,0.2,0.3 and 0.4 vol fractions of GMB results in the specific energy absorption increasing by6.6%,14.7%,24%and 36.6%,respectively,compared to neat glass fibre-epoxy tubes.Visual examination of the tubes and comparison with tubes subject to quasi-static compression is also performed.展开更多
Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the...Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given.展开更多
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ...In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.展开更多
基金Project(104244) supported by the Natural Sciences and Engineering Research Council of Canada
文摘A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
基金Projects(51575347,51405297,51204107)supported by the National Natural Science Foundation of China
文摘Surface strain fields of the designed compact tension(CT)specimens were investigated by digital image correlation(DIC)method.An integrative computer program was developed based on DIC algorithms to characterize the strain fields accurately and graphically.Strain distribution of the CT specimen was predicted by finite element method(FEM).Good agreement is observed between the surface strain fields measured by DIC and predicted by FEM,which reveals that the proposed method is practical and effective to determine the strain fields of CT specimens.Moreover,strain fields of the CT specimens with various compressive loads and notch diameters were studied by DIC.The experimental results can provide effective reference to usage of CT specimens in triaxial creep test by appropriately selecting specimen and experiment parameters.
文摘为研究层状复合岩石破坏过程和形态,采用相似理论制作出层状复合岩石相似模型,在单轴压缩条件下观测岩石的破坏特征,结合三维数字图像相关技术(3D digital image correlation,DIC)对试件的整体变形及破坏进行全过程的观测,得到复合岩石三维场的位移和应变,同时基于试件表面应变场的变化,建立了表面损伤程度与损伤因子D之间的量化关系,进而得到基于DIC表征的层状复合岩石损伤演化模型,研究结果表明:层状复合岩石的破坏形态与脆性岩石特征相似,以拉伸劈裂破坏和Y型剪切破坏为主;DIC试验记录的表面应变与损伤因子之间的量化关系可有效反映岩石破坏的全过程,以此为基础建立的损伤演化方程与实验数据拟合效果较好,证明了模型的合理性。
基金Project(2019JJ20028)supported by the Outstanding Youth Science Foundations of Hunan Province of ChinaProject(51774321)supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606)supported by the State Key Research Development Program of China。
文摘The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProject(41772313)supported by the National Natural Science Foundation of ChinaProject(2017zzts185)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming to investigate the fatigue damage mechanism and bearing characteristics of multi-pillar system under cyclic loading,a series of axial cyclic loading tests with different cyclic amplitudes were carried out on triple-pillar marble specimens.The acoustic emission(AE)and digital image correlation(DIC)were jointly applied to monitoring and recording damage evolution and failure behavior of each pillar,which reproduced the cataclysmic instability process of underground pillar groups.Experimental results indicated that the cyclic amplitude exceeding the threshold of damage initiation weakened the resistance to deformation,resulting in obvious release of dissipated energy and the reduction of bearing capacity.Conversely,after low-amplitude cyclic loading,both the pre-peak bearing capacity and the post-peak ductility of the pillar system increased due to the compaction of initial defects,indicating that the peak bearing capacity was closely related to the extent of pre-peak fatigue damage.The axial strain of each pillar was measured by DIC virtual extensometer to present the damage extent during cyclic loading phase.Meanwhile,fracture evolution of typical load drop points was also characterized by transverse strain fields(εxx),and observations showed that the damage extent of key pillar undergoing high-amplitude cyclic loads was more serious and violent,accompanied by the ejection of rock debris and loud noises.
基金Project(2021YFF0500200) supported by the National Key R&D Program of ChinaProject(52105437) supported by the National Natural Science Foundation of China+1 种基金Project(202006120184) supported by the Heilongjiang Provincial Postdoctoral Science Foundation,ChinaProject(LBH-Z20054) supported by the China Scholarship Council。
文摘The model of heat source(MHS) which reflects the thermal interaction between materials and laser during processing determines the accuracy of simulation results. To acquire desirable simulations results, although various modifications of heat sources in the aspect of absorption process of laser by materials have been purposed, the distribution of laser power density(DLPD) in MHS is still modeled theoretically. However, in the actual situations of laser processing, the DLPD is definitely different from the ideal models. So, it is indispensable to build MHS using actual DLPD to improve the accuracy of simulation results. Besides, an automatic modeling method will be benefit to simplify the tedious pre-processing of simulations. This paper presents a modeling method and corresponding algorithm to model heat source using measured DLPD. This algorithm automatically processes original data to get modeling parameters and provides a step MHS combining with absorption models. Simulations and experiments of heat transfer in steel plates irradiated by laser prove the mothed and the step MHS. Moreover, the investigations of laser induced thermal-crack propagation in glass highlight the signification of modeling heat source based on actual DLPD and demonstrate the enormous application of this method in the simulation of laser processing.
基金supported by the National Natural Science Foundation of China(6137217061401491)
文摘It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter- ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo- dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for- mation procedure.
基金Science & Technology Wing,Ministry of Mines,Government of India is acknowledged for financial support to the project on"Development of Rapid Analytical Procedures for Cobalt,Chromium and Nickel"
文摘Thin layer chromatography(TLC) of cobalt and nickel has been performed on silica gel layers induced with alkali mediated cellulose extract.A novel combination of 10% aqueous solutions of Tween-20 and potassium thiocyanate in 1∶1(v/v) was identified as the best mobile phase for the selective separation of Co2+from Ni2+on the impregnated Silica Gel G layers.The chromatographic characteristics of the cations were studied and the limits of detection as well as the limits of quantification for Co2+and Ni2+were determined.The quantitative estimation of the cations was achieved from the digital image analysis of respective chromatograms.The proposed quantitative method was successfully applied with 0-0.50% error for the determination of Co2+from Ni2+in spiked samples of bauxite,soil and rock containing common cations such as Al3+,Fe2+,Ti4+,Zn2+,Mn2+,Cu2+,Cr6+,Mg2+,etc.under the optimized chromatographic conditions.
基金Project(50808086) supported by the National Natural Science Foundation of China
文摘A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.
基金supported by the Department of Science and Technology(DST,India)through the Indo-Russian collaborative project scheme。
文摘Protecting occupants or payloads in crashes and blasts is of utmost importance in both moving and immobile structures.One way of achieving this is by using a sacrificial energy absorber.Composite tubes have been studied as potential energy absorbers due to their ability to fail progressively under axial compression.In this study,the energy absorption capability of these tubes is enhanced by adding hollow glass particles to the matrix.Drop-weight tests are performed on composite tubes,and a digital image correlation(DIC)-based technique is used to capture their load-displacement behaviour.This eliminates the use of electronic data acquisition systems,load cells,and accelerometers.The load-displacement curves of the tubes are obtained from the DIC-based technique and examined to understand their crushing behaviour.Although the mean crush load shows a drop,an increase in crush length is noticed.The specific energy absorbed by the tubes improves with an increase in GMB volume fraction.The addition of 0.1,0.2,0.3 and 0.4 vol fractions of GMB results in the specific energy absorption increasing by6.6%,14.7%,24%and 36.6%,respectively,compared to neat glass fibre-epoxy tubes.Visual examination of the tubes and comparison with tubes subject to quasi-static compression is also performed.
文摘Microwave diffraction tomography is a process to infer the internal structure of an objectfrom multiple angle views of microwave diffraction shadow. Being sensitive to variations in refractive index of the object, the procedure can be used to measure permittivity distributions within dielectric objects and to image soft tissues for biomedical applications. The optimal resolution distance obtainable is half a wavelength, but this can rarely be achieved because of practical limitations. Some procedures, however, are available to improve the practical resolution. One, which is suitable for microwave tomography, is to use multiple angle views data and to combine the resulting images. The other, which is suitable for improving the image reconstruction resolution, is to use the digital filtering technique and the filtered backpropagation algorithm. A system operating over the X-band microwave frequency is described and some experimental results for objects in air are given.
基金Project(51038004) supported by the National Natural Science Foundation of ChinaProject(2009318000078) supported by the Western China Communications Construction and Technology Program, China
文摘In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.