期刊文献+
共找到5,170篇文章
< 1 2 250 >
每页显示 20 50 100
Improved wavelet neural network combined with particle swarm optimization algorithm and its application 被引量:1
1
作者 李翔 杨尚东 +1 位作者 乞建勋 杨淑霞 《Journal of Central South University of Technology》 2006年第3期256-259,共4页
An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learnin... An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function. 展开更多
关键词 artificial neural network particle swarm optimization algorithm short-term load forecasting WAVELET curse of dimensionality
在线阅读 下载PDF
A new support vector machine optimized by improved particle swarm optimization and its application 被引量:3
2
作者 李翔 杨尚东 乞建勋 《Journal of Central South University of Technology》 EI 2006年第5期568-572,共5页
A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, ... A new support vector machine (SVM) optimized by an improved particle swarm optimization (PSO) combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improyed particle swarm optimization algorithm was used to optimize the parameters of SVM (c,σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM. 展开更多
关键词 support vector machine particle swarm optimization algorithm short-term load forecasting simulated annealing
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
3
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
4
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST particle swarm optimization imMUNITY algorithm PREDICT
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
5
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
6
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application 被引量:2
7
作者 李星梅 张立辉 +1 位作者 乞建勋 张素芳 《Journal of Central South University of Technology》 EI 2008年第1期141-146,共6页
In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using... In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and fine-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying the effectiveness and stronger global convergence ability of the EPSO. 展开更多
关键词 particle swarm extended particle swarm optimization algorithm resource leveling
在线阅读 下载PDF
Bacterial graphical user interface oriented by particle swarm optimization strategy for optimization of multiple type DFACTS for power quality enhancement in distribution system 被引量:3
8
作者 M.Mohammadi M.Montazeri S.Abasi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期569-588,共20页
This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution syste... This study proposes a graphical user interface(GUI) based on an enhanced bacterial foraging optimization(EBFO) to find the optimal locations and sizing parameters of multi-type DFACTS in large-scale distribution systems.The proposed GUI based toolbox,allows the user to choose between single and multiple DFACTS allocations,followed by the type and number of them to be allocated.The EBFO is then applied to obtain optimal locations and ratings of the single and multiple DFACTS.This is found to be faster and provides more accurate results compared to the usual PSO and BFO.Results obtained with MATLAB/Simulink simulations are compared with PSO,BFO and enhanced BFO.It reveals that enhanced BFO shows quick convergence to reach the desired solution there by yielding superior solution quality.Simulation results concluded that the EBFO based multiple DFACTS allocation using DSSSC,APC and DSTATCOM is preferable to reduce power losses,improve load balancing and enhance voltage deviation index to 70%,38% and 132% respectively and also it can improve loading factor without additional power loss. 展开更多
关键词 distribution system power quality single type and multiple type DFACTS BFO algorithm particle swarm optimization(PSO)
在线阅读 下载PDF
Application of improved PSO to power transmission congestion management optimization model
9
作者 李翔 刘预胜 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期347-351,共5页
The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the ... The parameters of particles were encoded firstly, then the constraint conditions and fitness degree were processed, and the calculation steps of the improved PSO algorithm were presented. Finally, the issues with the adoption of the improved PSO algorithm were solved and the results were analyzed. The results show that it is beneficial to obtaining the optimal solution by increasing the number of particles but that will also increase the operation time. On the aspects of solving continuous differentiable non-linear optimization model with equality and inequality constraints, the optimization result of PSO algorithm is the same as that of the interior point method. Compared with genetic algorithms (GA), PSO algorithm is more effective in the local optimization, and unlike GA, it will not be early maturity. Meanwhile, PSO algorithm is also more effective in the boundary optimization than genetic algorithm. 展开更多
关键词 CONGESTION management particle swarm optimization (PSO) algorithm double FITNESS DEGREE
在线阅读 下载PDF
Momentum particle swarm optimizer
10
作者 Liu Yu Qin Zheng +1 位作者 Wang Xianghua He Xingshi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第4期941-946,共6页
The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the orig... The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities. 展开更多
关键词 evolutionary computation particle swarm optimization optimization algorithm.
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
11
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
12
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
13
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
在线阅读 下载PDF
An immune-swarm intelligence based algorithm for deterministic coverage problems of wireless sensor networks 被引量:1
14
作者 刘继忠 王保磊 +1 位作者 敖俊宇 Q.M.Jonathan WU 《Journal of Central South University》 SCIE EI CAS 2012年第11期3154-3161,共8页
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the... A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters. 展开更多
关键词 wireless sensor network deterministic area coverage immune-swarm algorithm particle swarm optimization artificialimmune system
在线阅读 下载PDF
Intelligent optimization methods of phase-modulation waveform
15
作者 SUN Jianwei WANG Chao +3 位作者 SHI Qingzhan REN Wenbo YAO Zekun YUAN Naichang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期916-923,共8页
With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex ele... With the continuous improvement of radar intelligence, it is difficult for traditional countermeasures to achieve ideal results. In order to deal with complex, changeable, and unknown threat signals in the complex electromagnetic environment, a waveform intelligent optimization model based on intelligent optimization algorithm is proposed. By virtue of the universality and fast running speed of the intelligent optimization algorithm, the model can optimize the parameters used to synthesize the countermeasure waveform according to different external signals, so as to improve the countermeasure performance.Genetic algorithm(GA) and particle swarm optimization(PSO)are used to simulate the intelligent optimization of interruptedsampling and phase-modulation repeater waveform. The experimental results under different radar signal conditions show that the scheme is feasible. The performance comparison between the algorithms and some problems in the experimental results also provide a certain reference for the follow-up work. 展开更多
关键词 waveform optimization intelligent optimization PHASE-MODULATION genetic algorithm(GA) particle swarm optimization(PSO)
在线阅读 下载PDF
Study on Rural Solid Waste Collection and Transportation Mode and Route Optimization Strategy in the Cold Regions of Northern China
16
作者 Li Chuan-gang Liu Peng +1 位作者 Xu Hui Ma Li 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期75-88,共14页
Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and tran... Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment. 展开更多
关键词 rural solid waste(RSW) collection and transportation route optimization rural environment collection and transportation costs elite retention particle swarm optimization-genetic algorithm(ERPSO-GA)
在线阅读 下载PDF
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
17
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(PSO)algorithm
在线阅读 下载PDF
成像引信二维稀疏MIMO阵列设计
18
作者 贺旭 李玉钊 +2 位作者 赵康 黄立峰 张梦宇 《现代防御技术》 北大核心 2025年第3期150-158,共9页
针对MIMO阵列雷达在成像引信上的应用,对引信近场成像中存在的等效相位中心误差进行分析并给出基于泰勒展开的二次项误差补偿方法。围绕弹上空间有限的前提条件,考虑收发天线耦合的影响,结合天线波束方向图的性能,给出收发阵元的半径分... 针对MIMO阵列雷达在成像引信上的应用,对引信近场成像中存在的等效相位中心误差进行分析并给出基于泰勒展开的二次项误差补偿方法。围绕弹上空间有限的前提条件,考虑收发天线耦合的影响,结合天线波束方向图的性能,给出收发阵元的半径分布区间作为有效集。在有效集的基础上提出基于分步粒子群(two-step particle swarm optimization,TS-PSO)算法的稀疏MIMO阵列优化方法,得到优化后的二维稀疏MIMO阵列。在此基础上,基于其接收的回波信号实现对等效相位中心误差和运动误差进行补偿,从而获取成像结果。由仿真结果可知,基于TS-PSO设计的二维稀疏MIMO阵列能够满足引信近场成像对分辨率和成像质量的需求,为下一步的实际应用奠定理论基础。 展开更多
关键词 多输入多输出 稀疏阵列 分步粒子群算法 近场成像 成像引信
在线阅读 下载PDF
Improving performance of open-pit mine production scheduling problem under grade uncertainty by hybrid algorithms 被引量:2
19
作者 Kamyar TOLOUEI Ehsan MOOSAVI +2 位作者 Amir Hossein BANGIAN TABRIZI Peyman AFZAL Abbas AGHAJANI BAZZAZI 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第9期2479-2493,共15页
One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term produ... One of the surface mining methods is open-pit mining,by which a pit is dug to extract ore or waste downwards from the earth’s surface.In the mining industry,one of the most significant difficulties is long-term production scheduling(LTPS)of the open-pit mines.Deterministic and uncertainty-based approaches are identified as the main strategies,which have been widely used to cope with this problem.Within the last few years,many researchers have highly considered a new computational type,which is less costly,i.e.,meta-heuristic methods,so as to solve the mine design and production scheduling problem.Although the optimality of the final solution cannot be guaranteed,they are able to produce sufficiently good solutions with relatively less computational costs.In the present paper,two hybrid models between augmented Lagrangian relaxation(ALR)and a particle swarm optimization(PSO)and ALR and bat algorithm(BA)are suggested so that the LTPS problem is solved under the condition of grade uncertainty.It is suggested to carry out the ALR method on the LTPS problem to improve its performance and accelerate the convergence.Moreover,the Lagrangian coefficients are updated by using PSO and BA.The presented models have been compared with the outcomes of the ALR-genetic algorithm,the ALR-traditional sub-gradient method,and the conventional method without using the Lagrangian approach.The results indicated that the ALR is considered a more efficient approach which can solve a large-scale problem and make a valid solution.Hence,it is more effectual than the conventional method.Furthermore,the time and cost of computation are diminished by the proposed hybrid strategies.The CPU time using the ALR-BA method is about 7.4%higher than the ALR-PSO approach. 展开更多
关键词 open-pit mine long-term production scheduling grade uncertainty augmented Lagrangian relaxation particle swarm optimization algorithm bat algorithm
在线阅读 下载PDF
一种机载分布式MIMO雷达节点位置与路径分步优化管控方法 被引量:1
20
作者 王楚涵 李小龙 +2 位作者 望明星 陈哲 张钊 《信号处理》 CSCD 北大核心 2024年第7期1249-1265,共17页
机载分布式多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达系统是基于机载分布式平台,采用多个雷达节点同时发射、同时接收信号的方式,协同处理多雷达回波以提升信噪比,进而提高雷达系统对目标区域的监视性能。系统资源管控能... 机载分布式多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达系统是基于机载分布式平台,采用多个雷达节点同时发射、同时接收信号的方式,协同处理多雷达回波以提升信噪比,进而提高雷达系统对目标区域的监视性能。系统资源管控能够显著提升节点位置、飞行路径等资源的利用率,增强探测目标能力,是机载分布式MIMO雷达系统的关键技术之一。本文研究了一种机载分布式MIMO雷达节点位置与路径分步优化管控方法。首先,根据雷达系统的探测需求、运动学约束、雷达节点位置等因素,建立了机载分布式MIMO雷达节点位置与路径优化模型。其次,利用粒子群算法(Particle Swarm Optimization,PSO)对机载分布式MIMO雷达节点位置进行优化求解得到各雷达节点最佳布站位置。随后,考虑机载分布式多节点不同路径匹配准则,包括航迹总和最短、最长航迹最短以及航迹残差最小准则,建立了多机协同逐帧路径优化模型,通过遗传算法(Genetic Algorithms,GA)进行逐帧求解,得到不同节点的优化飞行路径。仿真结果表明,相比常规布站方法,所提布站优化方法具有更好的区域监视性能;相比于直线飞行方案,所提路径优化方法所得飞行方案在逐帧区域监视性能上更优。 展开更多
关键词 多输入多输出雷达 优化管控 粒子群算法 遗传算法
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部