A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projecti...A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.展开更多
Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been propose...Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation;further, the solutions show that the signals of each rod are a combination of aerodynamic signals(with a constant value) and sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation techniques are also found to be achievable via the flat part of the signals.展开更多
基金supported by Youth Science and Technology Research FundShanxi Province Applied Basic Research Projectgrant number 201801D221039+2 种基金Science Foundation of North University of China grant number XJJ201813Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi grant number 2019L0570Aeronautical Science Foundation of China grant number 2019020U0002。
文摘A hypersonic aerodynamics analysis of an electromagnetic gun(EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout.Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration.With a steady state computational fluid dynamics(CFD) simulation,the basic density,pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0,6.0 and 7.0(angle of attack=0°) have been analyzed.Furthermore,the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization.Drag,lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack.A particle ballistic calculation was completed for the pendulum analysis.The results show that the configuration optimized projectile,launched from the EM gun at Mach number 5.0 to 7.0,acts in a much more stable way than the projectiles with regular aerodynamic layout.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472281 and 11532014)
文摘Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation;further, the solutions show that the signals of each rod are a combination of aerodynamic signals(with a constant value) and sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation techniques are also found to be achievable via the flat part of the signals.