知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,...知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。展开更多
在线学习群体检测是在新一轮科技革命赋能教育创新变革背景下,依据学习者个性化特征优化教育资源分层配置的关键途径。现有学习趣缘社群在线学习群体的检测主要依赖学习者的直接行为记录和互动指标,较少关注学习者潜在的社交参与水平和...在线学习群体检测是在新一轮科技革命赋能教育创新变革背景下,依据学习者个性化特征优化教育资源分层配置的关键途径。现有学习趣缘社群在线学习群体的检测主要依赖学习者的直接行为记录和互动指标,较少关注学习者潜在的社交参与水平和社群结构。为营造数智环境下学习者画像决策辅助全民自主学习的文化氛围,本文提出一种社交参与视角下超图增强的学习趣缘社群群体检测方法。首先,从影响用户社交参与的维度出发,构建能够体现学习者社交参与水平的特征集。其次,提出超图卷积网络(hypergraph convolutional network,HyperGCN)增强的图聚类算法HG-SDCN(structural deep clustering network based on HyperGCN),解决了利用二分图检测在线学习群体时无法有效捕捉学习者多元交互关系和高阶结构的问题。最后,从真实学习趣缘社群收集数据,验证本文提出方法的检测效果。与基线相比,本文方法在Acc(accuracy)、F1、NMI(normalized mutual information)和ARI(adjusted Rand index)等评价指标上分别提升了16.16、9.77、16.01和22.14个百分点。上述结果不仅证明了HyperGCN在捕捉学习者高阶结构实现在线学习群体检测任务中的有效性,还为未来从社交参与维度制定调整个性化教育资源配置策略提供了方法和理论支撑。展开更多
文摘知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。
文摘在线学习群体检测是在新一轮科技革命赋能教育创新变革背景下,依据学习者个性化特征优化教育资源分层配置的关键途径。现有学习趣缘社群在线学习群体的检测主要依赖学习者的直接行为记录和互动指标,较少关注学习者潜在的社交参与水平和社群结构。为营造数智环境下学习者画像决策辅助全民自主学习的文化氛围,本文提出一种社交参与视角下超图增强的学习趣缘社群群体检测方法。首先,从影响用户社交参与的维度出发,构建能够体现学习者社交参与水平的特征集。其次,提出超图卷积网络(hypergraph convolutional network,HyperGCN)增强的图聚类算法HG-SDCN(structural deep clustering network based on HyperGCN),解决了利用二分图检测在线学习群体时无法有效捕捉学习者多元交互关系和高阶结构的问题。最后,从真实学习趣缘社群收集数据,验证本文提出方法的检测效果。与基线相比,本文方法在Acc(accuracy)、F1、NMI(normalized mutual information)和ARI(adjusted Rand index)等评价指标上分别提升了16.16、9.77、16.01和22.14个百分点。上述结果不仅证明了HyperGCN在捕捉学习者高阶结构实现在线学习群体检测任务中的有效性,还为未来从社交参与维度制定调整个性化教育资源配置策略提供了方法和理论支撑。