期刊文献+
共找到449篇文章
< 1 2 23 >
每页显示 20 50 100
基于Hypergraph的突发事件情景案例表示与检索方法研究 被引量:3
1
作者 王兴鹏 桂莉 王灿 《情报杂志》 CSSCI 北大核心 2024年第1期121-126,共6页
[研究目的]突发事件具有情景演化特征,突发事件案例不仅要对单个情景特征进行描述,也要描述不同情景之间的演化关系。[研究方法]在对突发事件情景演化机理和情景案例特征分析基础上,引入超图理论,将其应用于突发事件情景案例表示,建立... [研究目的]突发事件具有情景演化特征,突发事件案例不仅要对单个情景特征进行描述,也要描述不同情景之间的演化关系。[研究方法]在对突发事件情景演化机理和情景案例特征分析基础上,引入超图理论,将其应用于突发事件情景案例表示,建立了突发事件情景链超图模型,并基于该模型提出了包括情景链检索和情景特征检索的两阶段检索策略和相应的相似度计算方法。[研究结论]该模型能够有效描述突发事件情景案例的复杂演化特征,并能提高案例检索的质量和效果。 展开更多
关键词 突发事件 超图 突发事件情景 案例表示 情景案例检索 情景演化机理
在线阅读 下载PDF
建成环境影响下的城市轨道交通客流多步短时预测 被引量:4
2
作者 李之红 郄堃 +2 位作者 王健宇 许晗 陈金政 《交通运输系统工程与信息》 北大核心 2025年第1期160-172,共13页
为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间... 为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间序列模块,双层超图神经网络模块用于挖掘轨道交通线路站点间的高阶连通关系和相邻同类建成区域站点的集群关系,时间序列模块用于表征历史客流数据的时间依赖关系。同时,以建成环境和线路作为变量构造新的损失函数,旨在剖析建成环境的影响,提高模型的预测性能。最后,以武汉轨道交通数据为例开展实证研究。研究结果显示:考虑建成环境和轨道站点高阶连通关系对客流预测精度的提升效果显著,本模型均方根误差(RMSE)和平均绝对误差(MAE)值分别为52.04和29.32,比基线模型降低了22%以上,性能显著优于基线模型;通过消融实验验证了融合轨道高阶联通关系和建成环境对模型性能的贡献,其中,单步预测任务中,考虑这两种因素使模型性能分别提升了6%和9%,多步预测任务中,分别提升了4%和12%;构造的融合建成环境因素的可解释损失函数,提高了模型的预测性能,同时,使模型具备更好的科学性和可解释性。研究成果为城市轨道交通的客流管理和列车调度提供了技术支持。 展开更多
关键词 智能交通 客流多步预测 超图时空网络 城市轨道交通 建成环境影响 可解释损失函数
在线阅读 下载PDF
基于双超图神经网络特征融合的文本分类
3
作者 郑诚 李鹏飞 《计算机工程》 北大核心 2025年第6期127-135,共9页
近年来,图神经网络(GNN)在文本分类任务中受到广泛应用。当前基于GNN的文本分类模型首先将文本建模为图,然后使用GNN对文本图进行特征传播与聚合,但是此类方法有两点不足:一是现有模型由于图结构的限制无法捕获单词之间的高阶语义关系;... 近年来,图神经网络(GNN)在文本分类任务中受到广泛应用。当前基于GNN的文本分类模型首先将文本建模为图,然后使用GNN对文本图进行特征传播与聚合,但是此类方法有两点不足:一是现有模型由于图结构的限制无法捕获单词之间的高阶语义关系;二是现有模型无法捕获文本中的关键语义信息。为了解决上述问题,提出一种基于双超图卷积网络特征融合的文本分类模型。一方面,使用原始文本建立文本超图;另一方面,为短文本引入外部知识,使用基于SenticNet词库的外部知识对文本进行语义增强,构建语义超图。经过超图卷积后通过注意力机制对双超图特征进行融合,实现短文本分类。在4个文本分类数据集上的实验结果表明,该模型优于基线模型,具有优越的文本分类性能。 展开更多
关键词 文本分类 超图 特征融合 SenticNet词库 自然语言处理
在线阅读 下载PDF
考虑非邻近节点空间相关性的交通流预测模型
4
作者 闫光辉 李鸿涛 +1 位作者 张斌 常文文 《计算机应用研究》 北大核心 2025年第3期825-833,共9页
针对现有的交通流预测模型存在难以对非邻近节点之间的时空相关性显式建模的问题,提出一种新的利用超图表征空间相关性的超图卷积神经网络模型(double attention hypergraph convolution neural network,A2HGCN)。首先,通过寻找节点之... 针对现有的交通流预测模型存在难以对非邻近节点之间的时空相关性显式建模的问题,提出一种新的利用超图表征空间相关性的超图卷积神经网络模型(double attention hypergraph convolution neural network,A2HGCN)。首先,通过寻找节点之间的相似关系构造超边,利用节点之间的连接关系构造超图;然后提出一个超图卷积模型,其中利用超图卷积和将超图线扩展为图后利用线图卷积来捕获潜在的空间相关性;再利用融合双层注意力机制的卷积长短时记忆网络捕获时间相关性,最后得出预测结果。在数据集PEMS-BAY中,A2HGCN方法的评价指标MAE、MAPE和RMSE在预测步长为15 min时为1.223、2.617%、2.547,30 min时为1.554、3.541%、3.420,60 min时为1.867、4.578%、4.224。在数据集PEMSM中,该方法的评价指标MAE、MAPE和RMSE在预测步长为15 min时为1.858、4.385%、3.339,30 min时为2.374、5.775%、4.362,60 min时为3.046、7.713%、5.479。结果表明,该方法在不同预测步长下均优于基线模型,验证了考虑非邻近节点之间的时空相关性对于提高交通预测准确性的有效性。由此可得,超图卷积神经网络在捕获时空相关性方面具有优势。 展开更多
关键词 交通流预测 超图理论 图卷积网络
在线阅读 下载PDF
基于超图神经网络的多尺度信息传播预测模型
5
作者 赵敬华 张柱 +1 位作者 吕锡婷 林慧丹 《计算机应用》 北大核心 2025年第11期3529-3539,共11页
针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,... 针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。 展开更多
关键词 信息传播预测 图卷积网络 超图神经网络 强化学习 多尺度
在线阅读 下载PDF
基于项目级和类别级双混合超图的会话推荐
6
作者 李建伏 张丹 《计算机工程与设计》 北大核心 2025年第6期1758-1765,共8页
为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节... 为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节点的表示;引入引导注意力机制融合两种节点表示;用更新后的节点嵌入学习会话表示,计算每个节点的点击概率并推荐概率最大的k个项目。实验结果表明,DF-MHCN方法相对于现有的会话推荐方法具有较高的精度。 展开更多
关键词 基于会话的推荐 混合超图 项目级混合超图 类别级混合超图 超图卷积网络 混合超图卷积网络 引导注意力机制
在线阅读 下载PDF
基于超图卷积和多角度拓扑细化的骨骼行为识别方法
7
作者 黄倩 苏新凯 +1 位作者 李畅 巫义锐 《计算机科学》 北大核心 2025年第5期220-226,共7页
由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空... 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。 展开更多
关键词 行为识别 图卷积网络 超图神经网络 骨架建模 拓扑细化
在线阅读 下载PDF
基于多视角学习的图神经网络群组推荐模型
8
作者 王聪 史艳翠 《计算机应用》 北大核心 2025年第4期1205-1212,共8页
针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征... 针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征,从而充分表达用户、群组和项目之间的显隐式关系;再提出一种多视角信息融合策略,以获取最终的群组和项目表示。在Mafengwo、CAMRa2011和Weeplaces数据集上的实验结果表明,相较于基线模型ConsRec,GRGM模型的命中率(HR@5、HR@10)和归一化折损累计增益(NDCG@5、NDCG@10)在Mafengwo数据集上分别提升了3.38%、1.96%和3.67%、3.84%,在CAMRa2011数据集上分别提升了2.87%、1.18%和0.96%、1.62%,在Weeplaces数据集上分别提升了2.41%、1.69%和4.35%、2.60%。可见,GRGM模型相较于对比模型具有更好的推荐性能。 展开更多
关键词 群组推荐 图神经网络 多视角学习 超图 隐式信息
在线阅读 下载PDF
对比学习增强的多行为超图神经网络推荐模型
9
作者 王光 李佳欣 《计算机应用研究》 北大核心 2025年第8期2304-2311,共8页
多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(m... 多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(multi-behavior hypergraph neural network model enhanced with contrastive lear-ning,MBHCL),在建模用户复杂多类型交互的同时,结合对比学习捕获行为间共性与差异,以获取更优嵌入表示,缓解冷启动与数据稀疏问题。具体地,MBHCL首先构建用户-项目多行为交互超图,以刻画用户对项目不同维度的偏好;其次设计三个对比任务整合单行为表示,通过捕捉行为间的共性与差异获取全面用户兴趣偏好。最终,MBHCL在四个真实场景数据集上进行对比实验。结果表明,在Tmall和BeiBei数据集上,HIT和NDCG指标有至少4.8%的提升,在Kuairand和Yelp数据集上,HIT和NDCG指标至少提升3.6%,并通过消融实验验证了各模块的有效性,同时显著改善了冷启动用户推荐效果。 展开更多
关键词 推荐系统 多行为推荐 图神经网络 超图 对比学习 自监督学习
在线阅读 下载PDF
基于尾流关联的动态超图风电功率超短期预测方法 被引量:2
10
作者 钟吴君 李培强 涂春鸣 《中国电机工程学报》 北大核心 2025年第12期4693-4706,I0013,共15页
精准的风电功率预测对于电力系统安全稳定运行具有十分重要的现实意义。受到尾流效应等因素影响,风电场内各风机之间存在着复杂的关联特性。现有研究忽略了时空关联特性的动态变化过程,传统图结构的二元关系表示方法也难以精确的表征风... 精准的风电功率预测对于电力系统安全稳定运行具有十分重要的现实意义。受到尾流效应等因素影响,风电场内各风机之间存在着复杂的关联特性。现有研究忽略了时空关联特性的动态变化过程,传统图结构的二元关系表示方法也难以精确的表征风电机组间复杂多元的时空关系,导致风机间的时空特征难以精确捕捉。同时考虑到深度学习模型可解性差的问题与尾流效应对风电功率的影响,该文提出一种基于尾流关联的动态超图风电功率超短期预测方法。首先,将各风机视为节点,各风机历史功率作为特征输入,风电机组的空间位置和多元复杂关系作为超边,沿着时间维度构建风电机组动态超图表示结构。然后,结合每个时刻的风向数据与风机信息,根据Jensen尾流模型原理,以射线法的形式构建基于尾流关联的动态超图。在此基础上,针对动态超图的特殊数据结构,构建基于动态超图卷积的时空聚合特征提取模块与双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)的时空特征拟合模块,提取动态时空特征并实现精准预测,最后,基于真实风电数据进行实验分析,从多维度验证该方法的优越性。 展开更多
关键词 风功率预测 超图 动态特性 时空特性 尾流效应 动态超图卷积
在线阅读 下载PDF
结合多尺度注意力和动态构建的非均匀超图聚类模型 被引量:1
11
作者 朱峰冉 王慧颖 +2 位作者 林晓丽 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第2期200-207,共8页
单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via at... 单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via attentive hypergraph neural network)虽然较好地学习了非均匀超图的关系信息,但仍存在两点不足:(1)对于局部关系信息的挖掘不足;(2)忽略了隐藏的高阶关系。因此,提出一种基于多尺度注意力和动态超图构建的非均匀超图聚类模型MADC(non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)。一方面,使用多尺度注意力充分学习了超边中节点与节点之间的局部关系信息;另一方面,采用动态构建挖掘隐藏的高阶关系,进一步丰富了超图特征嵌入。真实数据集上的大量实验结果验证了MADC模型在非均匀超图聚类上的聚类准确率(accuracy,ACC)、标准互信息(normalized mutual information,NMI)和调整兰德指数(adjusted Rand index,ARI)均优于CIAH等所有Baseline方法。 展开更多
关键词 非均匀超图 超图聚类 超图神经网络 多尺度注意力
在线阅读 下载PDF
基于多层超图卷积神经网络的故障诊断方法 被引量:1
12
作者 张元东 张先杰 +1 位作者 张若楠 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第1期131-137,共7页
机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法... 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。 展开更多
关键词 超图神经网络(HGNN) 图卷积网络(GCN) 多层超图 故障诊断
在线阅读 下载PDF
基于跨模态超图优化学习的多模态情感分析
13
作者 蒋昆 赵征鹏 +3 位作者 普园媛 黄健 谷金晶 徐丹 《计算机科学》 北大核心 2025年第7期210-217,共8页
多模态情感分析旨在从文本、音频和视觉等多种模态信息中检测出更准确的情感表达。以往的研究通过图神经网络来捕获跨模态和跨时间的节点情感交互,从而获得高度表达的情感信息。但图神经网络只能实现二元信息交互,这限制了对模态间复杂... 多模态情感分析旨在从文本、音频和视觉等多种模态信息中检测出更准确的情感表达。以往的研究通过图神经网络来捕获跨模态和跨时间的节点情感交互,从而获得高度表达的情感信息。但图神经网络只能实现二元信息交互,这限制了对模态间复杂情感交互信息的利用,多模态数据中更需要挖掘这种潜在的情感交互信息。因此,提出了一种基于跨模态超图神经网络的多模态情感分析框架,利用超图结构可以连接多个节点的特性,充分利用模态内和模态间的复杂情感交互信息,以挖掘数据间更深层次的情感表征。此外,提出了一种超图自适应模块来优化学习原始超图的结构。超图自适应网络通过点边交叉注意力、超边采样和节点采样来发现潜在的隐式连接,并修剪冗余的超边以及无关的事件节点,对超图结构进行更新与优化。相对于初始结构,更新后的超图结构能够更准确、更完整地表述数据间的潜在情感关联性,以达到更好的情感分类效果。最后,在两个公开的CMU-MOSI和CMU-MOSEI数据集上进行了广泛的实验,结果表明所提框架相对于其他先进算法在多个性能指标上提升了1%~6%。 展开更多
关键词 多模态情感分析 超图神经网络 超图优化 自适应网络 点边信息融合
在线阅读 下载PDF
基于信息熵的超网络重要节点识别方法
14
作者 涂贵宇 潘文林 张天军 《复杂系统与复杂性科学》 北大核心 2025年第1期18-25,共8页
针对超网络中重要节点识别方法分辨率不足、识别结果不够具体和全面的问题,结合节点度、超度、邻接度和邻接超度利用信息熵公式提出识别超网络重要节点的复合信息熵。该方法设置了可动态调整的影响系数,通过分析节点度、邻接度、节点超... 针对超网络中重要节点识别方法分辨率不足、识别结果不够具体和全面的问题,结合节点度、超度、邻接度和邻接超度利用信息熵公式提出识别超网络重要节点的复合信息熵。该方法设置了可动态调整的影响系数,通过分析节点度、邻接度、节点超度和邻接超度的影响程度,得到每个节点的复合信息熵。其优势在于考虑了节点和邻接节点的影响,且只利用节点的局部属性,致其复杂度较低。仿真实验部分在科研合作超网络和昆明普线公交线路超网络中进行验证。实验结果表明,该方法能有效识别超网络中的重要节点。 展开更多
关键词 超图 超网络 超度 重要节点
在线阅读 下载PDF
基于超图的知识提取算法
15
作者 刘川 杜宝苍 毛华 《计算机科学》 北大核心 2025年第4期147-160,共14页
知识提取一直是计算机领域研究的主题之一,然而现有的一些知识提取方法还不能满足可视化以及潜在知识的提取两方面的实际需求。众所周知,知识是由可定义知识和潜在知识组成,并且可定义知识可以在潜在知识的提取过程中同时得到,反之则不... 知识提取一直是计算机领域研究的主题之一,然而现有的一些知识提取方法还不能满足可视化以及潜在知识的提取两方面的实际需求。众所周知,知识是由可定义知识和潜在知识组成,并且可定义知识可以在潜在知识的提取过程中同时得到,反之则不然。有关可定义知识的提取目前已有许多成果,但针对潜在知识的提取的研究相对较少,特别是如何通过可视化方法提取潜在知识是一个急需解决的问题。为此,文中利用超图的可视化特点,在信息系统的背景下,探究了信息系统与超图之间的对应关系,并且给出了两者之间相互转化的方法。利用此方法,结合超图理论与粗糙集理论,定义了基于超图的一对上下近似算子,进一步地,提出近似超图的概念,探究近似超图的相关性质,完成近似超图的构建,并在此基础上创建了一种有效方法以实现超图框架下的知识提取。将所提方法与经典的和新近提出的近似理论以及知识提取方法进行了对比,结果表明所提方法在近似方案和知识提取等方面具有多种优势。通过实际案例验证了所提方法的正确性,从而说明了其可应用性。所提方法是现有的知识提取理论的发展和补充。 展开更多
关键词 知识提取 信息系统 超图 近似超图 可视化方法
在线阅读 下载PDF
融合自适应超图的自监督知识感知推荐模型
16
作者 周家旋 柳先辉 +2 位作者 赵晓东 侯文龙 赵卫东 《计算机科学与探索》 北大核心 2025年第5期1217-1229,共13页
为缓解传统协同过滤推荐系统存在的冷启动问题,知识图谱作为一种辅助知识被引入到推荐系统中。然而,现有的知识图谱推荐模型在充分地建模高阶相互作用方面存在局限性,难以捕获来自高阶邻居的重要信息。此外,监督信号的稀疏性问题也影响... 为缓解传统协同过滤推荐系统存在的冷启动问题,知识图谱作为一种辅助知识被引入到推荐系统中。然而,现有的知识图谱推荐模型在充分地建模高阶相互作用方面存在局限性,难以捕获来自高阶邻居的重要信息。此外,监督信号的稀疏性问题也影响着推荐系统性能。为了解决上述问题,提出一种融合自适应超图的自监督知识感知推荐模型。该模型使用混合图卷积网络共同学习交互图中低阶交互嵌入与自适应超图中高阶交互嵌入;使用关系感知图注意网络挖掘知识图谱中用户与物品丰富的知识信息;模型在这三种视图基础上构建对比学习任务,通过引入自监督信号来缓解交互数据的稀疏性问题;将三种嵌入相结合,用于后续的推荐预测。该模型在多个公开数据集上与KGAT、KGIN、KACL等基准模型进行了对比实验,与7个对比模型中推荐性能最好的模型相比,在MovieLens数据集上,Recall@20提升了1.22%,NDCG@20提升了1.17%;在Yelp2018数据集上,Recall@20提升了1.41%,NDCG@20提升了1.60%。实验结果显示该模型的推荐性能优于其他基准模型。 展开更多
关键词 推荐系统 知识图谱 自适应超图 自监督学习 关系感知图注意网络
在线阅读 下载PDF
基于分级注意力网络和多层对比学习的社交推荐
17
作者 张丽杰 王绍卿 +1 位作者 张尧 孙福振 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期133-148,共16页
将社交关系融入推荐系统中,能有效提高推荐质量。然而现实世界中用户的交互数据是稀疏和复杂的,如何更好地利用社交信息是关键问题。现有社交推荐模型没有充分探索高阶好友的影响,而且忽略了用户间的关系强度和不同种类的关系对用户的影... 将社交关系融入推荐系统中,能有效提高推荐质量。然而现实世界中用户的交互数据是稀疏和复杂的,如何更好地利用社交信息是关键问题。现有社交推荐模型没有充分探索高阶好友的影响,而且忽略了用户间的关系强度和不同种类的关系对用户的影响,导致推荐性能不佳。为了解决上述问题,本文提出一个基于分级注意力网络和层次化对比学习的社交推荐模型。具体来说,首先,依据用户间不同关系构建用户级超图,扩大节点聚合的感知范围,加深模型深度。然后,设计多级注意力网络更好地捕捉用户交互数据之间的关系和重要性,其中,视图级自注意力机制捕获好友对用户的影响以及项目间的关联程度,通道级注意力自适应地调整不同种类的关系对用户的影响。同时,引入层次化对比学习对数据进行增强,包括视图间和跨视图的第一层对比学习和针对高阶关系的第二层对比学习,多维度捕获数据的细微差距和高层次的抽象特征。最后,将所提出的模型在4个公开基准数据集上进行评估,结果表明本文模型Precision、Recall、NDCG较其他最优基线模型分别提升7.61%、11.05%、10.69%,验证了本文模型的有效性。 展开更多
关键词 社交推荐 注意力网络 超图学习 对比学习 推荐系统
在线阅读 下载PDF
行为模式时空动态超图聚类的公共交通异常团体检测
18
作者 赵霞 李之红 +3 位作者 刘剑锋 杨静 吴梦琳 秦伊萌 《交通运输系统工程与信息》 北大核心 2025年第3期132-141,共10页
针对现有异常团体检测研究忽略刻画个体隐行为模式、邻域团体隐行为模式以及行为模式时序变化特性的现状,本文提出一个时空动态超图聚类(Spatio-temporal Dynamic Hypergraph Clustering, STDHC)模型。先提取个体在连续时间切片的出行... 针对现有异常团体检测研究忽略刻画个体隐行为模式、邻域团体隐行为模式以及行为模式时序变化特性的现状,本文提出一个时空动态超图聚类(Spatio-temporal Dynamic Hypergraph Clustering, STDHC)模型。先提取个体在连续时间切片的出行特征矩阵序列,对应构建行为模式超图序列,刻画各时段下多个体的高阶关联特性;由此运用Transformer,从时间维度学习个体显性出行特征背后的隐行为模式;运用超图卷积网络,从空间维度学习邻域团体的隐行为模式;度量双向时间传播作用下的超图拓扑结构变化值,从时间变化维度捕捉个体行为模式的时序变化特性;利用注意力机制融合上述3类特征,更新超图卷积网络,实现团体的自动检测。将本文提出模型应用于公共交通扒窃团体的检测案例,通过系列对比、消融和鲁棒分析实验,证实能在连续时间步长下取得高于6种基线模型2%~6%的提升性能。研究成果可为智能检测公共交通场所异常团体和提升安全运营水平提供理论支撑。 展开更多
关键词 智能交通 异常检测 深度学习 行为模式 超图卷积网络
在线阅读 下载PDF
半监督超边界Fisher分析的转子故障数据降维算法
19
作者 原健辉 赵荣珍 邓林峰 《振动.测试与诊断》 北大核心 2025年第3期543-550,624,共9页
针对转子故障数据集因“维数灾难”、标签样本有限导致故障辨识精度低的问题,提出了一种基于半监督超边界Fisher分析(semi-supervised hyper-marginal Fisher analysis,简称SHMFA)的故障数据集降维算法。首先,利用标签样本的类内、类间... 针对转子故障数据集因“维数灾难”、标签样本有限导致故障辨识精度低的问题,提出了一种基于半监督超边界Fisher分析(semi-supervised hyper-marginal Fisher analysis,简称SHMFA)的故障数据集降维算法。首先,利用标签样本的类内、类间近邻点分别构建类内、类间超图,通过无标签样本的近邻点和远离点构建无监督本征超图和惩罚超图;其次,以压缩类内信息、分离类间信息为准则构造目标函数,实现故障数据集维数约简,SHMFA通过构造超图充分刻画故障数据集的高维空间结构特性;最后,以转子系统振动信号构成的高维故障数据集为对象,采用K近邻分类器(K-nearest neighbor,简称KNN)对该算法的性能进行验证。结果表明,本算法优于传统的数据降维算法,能够优化旋转机械运行状态表征的数据结构模型,并提高故障分类的精度,为数据运算提供理论依据。 展开更多
关键词 故障诊断 边界Fisher分析 特征提取 超图结构 半监督学习
在线阅读 下载PDF
基于提示学习与超图的事件因果关系识别模型
20
作者 程章桃 黄浩燃 +3 位作者 薛荷 刘乐源 钟婷 周帆 《计算机科学》 北大核心 2025年第9期303-312,共10页
事件因果关系识别是自然语言处理领域的重要研究方向,其任务目标是识别两个特定事件间是否存在因果关联。当前的主流方法通常采用预训练语言模型从文本中提取有限的上下文语义信息,从而判别事件间的因果关系。然而,此类方法仅简单理解... 事件因果关系识别是自然语言处理领域的重要研究方向,其任务目标是识别两个特定事件间是否存在因果关联。当前的主流方法通常采用预训练语言模型从文本中提取有限的上下文语义信息,从而判别事件间的因果关系。然而,此类方法仅简单理解关键事件结构及其上下文语义信息,并未充分利用预训练语言模型的能力,同时忽略了历史事件与相关标签在构建类比推理以确定目标事件间因果关系上的重要作用。为了应对上述挑战,提出一种基于提示学习与超图增强的模型(Prompt Learning and Hypergraph Enhanced Model,PLHGE)。该模型能够充分捕捉事件之间的全局交互信息及当前事件与历史事件之间的事件结构与语义联系,通过融合描述性知识与文本语义,生成层次化的事件结构;通过构建基于知识的超图,融入细粒度及文档级语义信息,提升了识别能力;此外,引入基于关系性知识的提示学习模块,利用预训练语言模型中的潜在因果知识来提升对事件因果关系的识别能力。最后,在两个公开基准数据集上进行了广泛的实验,实验结果表明,PLHGE模型在因果关系识别任务中优于现有的基线模型。 展开更多
关键词 事件因果关系识别 自然语言处理 提示学习 超图
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部