期刊文献+
共找到121,281篇文章
< 1 2 250 >
每页显示 20 50 100
基于手机拍照结合Image J软件对干辣椒外观品质的分级研究 被引量:1
1
作者 胡晋伟 赵志峰 +4 位作者 张欣莹 祝贺 李波 孙海清 徐炜桢 《食品与发酵工业》 CAS 北大核心 2025年第1期273-279,共7页
干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机... 干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机拍照对干辣椒获取图像,通过Image J软件进行图像处理,提出了一种便捷、快速、准确的干辣椒外观形状相关特征量的测定方法。与游标卡尺法、剪纸法等人工测量相比,该方法更方便快速,可用于干辣椒的长度、宽度、面积等表型指标的测量。同时,通过构建红绿蓝(RGB)色彩模型获得干辣椒的外观颜色特征参数,色泽分选采用R/(G+B)比率为分级依据,结合干辣椒宽长比和面积可以将干辣椒分为优质、合格、不合格3个等级。 展开更多
关键词 干辣椒 手机拍照 image J软件 RGB色彩模型 分级
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
2
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
DnCNN-RM:an adaptive SAR image denoising algorithm based on residual networks
3
作者 OU Hai-ning LI Chang-di +3 位作者 ZENG Rui-bin WU Yan-feng LIU Jia-ning CHENG Peng 《中国光学(中英文)》 北大核心 2025年第5期1209-1218,共10页
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl... In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios. 展开更多
关键词 SAR images image denoising residual networks adaptive activation function
在线阅读 下载PDF
Image Super-Resolution Reconstruction Model Based on SRGAN
4
作者 LU Xin-ya CHEN Jia-yi +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期21-28,共8页
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual... Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects. 展开更多
关键词 image super-resolution reconstruction Generative Adversarial Networks CSAB PatchGAN architecture
在线阅读 下载PDF
Low-Light Image Enhancement Model Based on Retinex Theory
5
作者 SHANG Cheng SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期14-20,57,共8页
Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevita... Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME. 展开更多
关键词 Low-light image enhancement Retinex model Noise suppression Feature fusion
在线阅读 下载PDF
Research on SAR Image Lightweight Detection Based on Improved YOLOV8
6
作者 WANG Qing SI Zhan-jun 《印刷与数字媒体技术研究》 北大核心 2025年第1期93-100,共8页
In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal... In recent years,with the development of synthetic aperture radar(SAR)technology and the widespread application of deep learning,lightweight detection of SAR images has emerged as a research direction.The ultimate goal is to reduce computational and storage requirements while ensuring detection accuracy and reliability,making it an ideal choice for achieving rapid response and efficient processing.In this regard,a lightweight SAR ship target detection algorithm based on YOLOv8 was proposed in this study.Firstly,the C2f-Sc module was designed by fusing the C2f in the backbone network with the ScConv to reduce spatial redundancy and channel redundancy between features in convolutional neural networks.At the same time,the Ghost module was introduced into the neck network to effectively reduce model parameters and computational complexity.A relatively lightweight EMA attention mechanism was added to the neck network to promote the effective fusion of features at different levels.Experimental results showed that the Parameters and GFLOPs of the improved model are reduced by 8.5%and 7.0%when mAP@0.5 and mAP@0.5:0.95 are increased by 0.7%and 1.8%,respectively.It makes the model lightweight and improves the detection accuracy,which has certain application value. 展开更多
关键词 YOLOv8 Synthetic aperture radar image LIGHTWEIGHT Target detection
在线阅读 下载PDF
Dual networks with hierarchical attention for fine-grained image classification
7
作者 YANG Tao WANG Gaihua 《中国科学院大学学报(中英文)》 北大核心 2025年第6期806-813,共8页
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi... In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better. 展开更多
关键词 dual network(DNet) fine-grained image classification hierarchical attention features
在线阅读 下载PDF
Semantic segmentation of camouflage objects via fusing reconstructed multispectral and RGB images
8
作者 Feng Huang Gonghan Yang +5 位作者 Jing Chen Yixuan Xu Jingze Su Guimin Huang Shu Wang Wenxi Liu 《Defence Technology(防务技术)》 2025年第8期324-337,共14页
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du... Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing. 展开更多
关键词 Camouflage object detection Reconstructed multispectral image(MSI) Unmanned aerial vehicle(UAV) Semantic segmentation Remote sensing
在线阅读 下载PDF
A novel detection method for warhead fragment targets in optical images under dynamic strong interference environments
9
作者 Guoyi Zhang Hongxiang Zhang +4 位作者 Zhihua Shen Deren Kong Chenhao Ning Fei Shang Xiaohu Zhang 《Defence Technology(防务技术)》 2025年第1期252-270,共19页
A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,... A measurement system for the scattering characteristics of warhead fragments based on high-speed imaging systems offers advantages such as simple deployment,flexible maneuverability,and high spatiotemporal resolution,enabling the acquisition of full-process data of the fragment scattering process.However,mismatches between camera frame rates and target velocities can lead to long motion blur tails of high-speed fragment targets,resulting in low signal-to-noise ratios and rendering conventional detection algorithms ineffective in dynamic strong interference testing environments.In this study,we propose a detection framework centered on dynamic strong interference disturbance signal separation and suppression.We introduce a mixture Gaussian model constrained under a joint spatialtemporal-transform domain Dirichlet process,combined with total variation regularization to achieve disturbance signal suppression.Experimental results demonstrate that the proposed disturbance suppression method can be integrated with certain conventional motion target detection tasks,enabling adaptation to real-world data to a certain extent.Moreover,we provide a specific implementation of this process,which achieves a detection rate close to 100%with an approximate 0%false alarm rate in multiple sets of real target field test data.This research effectively advances the development of the field of damage parameter testing. 展开更多
关键词 Damage parameter testing Warhead fragment target detection High-speed imaging systems Dynamic strong interference disturbance suppression Variational bayesian inference Motion target detection Faint streak-like target detection
在线阅读 下载PDF
用扫描仪及Image J软件精确测量叶片形态数量特征的方法 被引量:57
10
作者 戴志聪 杜道林 +3 位作者 司春灿 林英 郝建良 孙凤 《广西植物》 CAS CSCD 北大核心 2009年第3期342-347,共6页
传统的纸样称重法用来测量离体叶片的面积,烦琐、耗时、精度不高。为寻求一种适合的方法,我们对离体叶片采用扫描仪获取叶片的数字图像,利用Image J软件测量叶片的长、宽、周长、面积及叶柄的长,并与传统的纸样称重测定叶面积法进行比... 传统的纸样称重法用来测量离体叶片的面积,烦琐、耗时、精度不高。为寻求一种适合的方法,我们对离体叶片采用扫描仪获取叶片的数字图像,利用Image J软件测量叶片的长、宽、周长、面积及叶柄的长,并与传统的纸样称重测定叶面积法进行比较。结果表明,此方法具有低成本、快速、精确等特点,适用于植物形态学、植物生理生态学、林学及农业等对叶片形态特征的测量研究工作。 展开更多
关键词 叶片形态分析 图像处理 image J
在线阅读 下载PDF
运用Image J软件分析土壤结构特征 被引量:35
11
作者 毕利东 张斌 潘继花 《土壤》 CAS CSCD 北大核心 2009年第4期654-658,共5页
以土壤团聚体、土壤裂隙以及土壤优先流特征数码图像为研究对象,介绍了ImageJ软件在土壤结构特征分析中的应用。研究结果表明:①马尾松林地表层土壤团聚体圆度大于母质层土壤颗粒的圆度;②运用图像测量方法能够快速地测定土壤裂隙几何... 以土壤团聚体、土壤裂隙以及土壤优先流特征数码图像为研究对象,介绍了ImageJ软件在土壤结构特征分析中的应用。研究结果表明:①马尾松林地表层土壤团聚体圆度大于母质层土壤颗粒的圆度;②运用图像测量方法能够快速地测定土壤裂隙几何特征以及土壤收缩曲线;③土壤优先流示踪图像分析结果显示红壤性水稻土犁底层具有显著的防渗功能,而同一土壤剖面内土壤连通性孔隙存在较大的空间分异。最后,本文还对以上研究结果和图像分析方法进行了探讨。 展开更多
关键词 image J 土壤结构 图像分析 土壤团聚体 裂隙形态
在线阅读 下载PDF
基于Image Quilting算法的纹理合成 被引量:8
12
作者 林定 陈崇成 +1 位作者 唐丽玉 王钦敏 《系统仿真学报》 CAS CSCD 北大核心 2008年第S1期381-384,388,共5页
基于样图的纹理合成方法是继纹理映射、过程纹理合成方法后发展起来的纹理拼接技术,用于解决传统方法中出现的缝隙、扭曲、变形和参数调整等问题。Image Quilting算法是简单易行的接缝消除方法,采用Image Quilting算法合成纹理并生成Wan... 基于样图的纹理合成方法是继纹理映射、过程纹理合成方法后发展起来的纹理拼接技术,用于解决传统方法中出现的缝隙、扭曲、变形和参数调整等问题。Image Quilting算法是简单易行的接缝消除方法,采用Image Quilting算法合成纹理并生成Wang Tile集,继而拼接大图像。实验表明,Image Quilting算法能够较好地保持纹理特征的连续性,但在接缝处可能破坏纹元特征。 展开更多
关键词 image QUILTING 纹理合成 基于样图的纹理合成 纹理传输
在线阅读 下载PDF
Image-Pro Plus图像分析软件定量鸡胚尿囊膜血管新生面积的方法 被引量:33
13
作者 许扬 赵英凯 +1 位作者 毕明刚 刘妍 《中国比较医学杂志》 CAS 2007年第12期745-747,F0003,共4页
目的应用Image-Pro Plus 5.0图像处理和分析软件,研究鸡胚尿囊膜(chick chorioallantoic membrane,CAM)血管新生面积定量的新方法。方法20只发育良好的7日龄鸡胚,分为龙葵给药组和对照组,每组10只。将中药龙葵水提液及等量蒸馏水吸附于5... 目的应用Image-Pro Plus 5.0图像处理和分析软件,研究鸡胚尿囊膜(chick chorioallantoic membrane,CAM)血管新生面积定量的新方法。方法20只发育良好的7日龄鸡胚,分为龙葵给药组和对照组,每组10只。将中药龙葵水提液及等量蒸馏水吸附于5 mm直径的定性滤纸,置于CAM上。利用Image-Pro Plus 5.0软件,定量血管新生面积、蛋壳开窗处对应的CAM面积,计算出血管新生面积与CAM面积的比值。结果用Image-Pro Plus 5.0可方便、自动、准确地进行给药前后的数据收集和面积计算。统计分析表明,受试物龙葵可明显抑制CAM血管新生,与对照组比较有极显著差异(P<0.001)。结论Image-Pro Plus 5.0图像处理和分析软件是一种高效、准确的统计血管新生面积的工具,用该软件定量蛋壳开窗部位下的血管新生面积占开窗部位所对应的CAM总面积,不仅操作简便,而且数据计算自动生成,可较准确地反映鸡胚血管新生情况。 展开更多
关键词 图像分析 image.Pro PLUS 5.0 血管新生定量 鸡胚尿囊膜
在线阅读 下载PDF
基于TitanImage软件的QuickBird影像融合 被引量:2
14
作者 任德智 潘刚 葛立雯 《东北林业大学学报》 CAS CSCD 北大核心 2013年第3期131-134,共4页
基于北京东方泰坦科技股份有限公司研发具有完全自主知识产权的Titan Image7.0遥感图像处理软件平台,对QuickBird标准组合(全色0.61 m+多光谱2.44 m)影像进行像素级融合,探讨Titan Image7.0遥感图像处理平台在影像融合及评价方面的应用... 基于北京东方泰坦科技股份有限公司研发具有完全自主知识产权的Titan Image7.0遥感图像处理软件平台,对QuickBird标准组合(全色0.61 m+多光谱2.44 m)影像进行像素级融合,探讨Titan Image7.0遥感图像处理平台在影像融合及评价方面的应用。结果表明:该软件以友好的全中文界面,在同一平台上以简单的操作过程即可完成影像的融合过程与质量评价指标的求算,不仅有效的避免了跨平台、语言差异等因素带来的操作不便与信息损失,而且丰富的融合算法和质量评价指标,可以完成多种影像数据的融合和质量评价;从QuickBird影像融合与质量评价结果来看,参与融合的4种算法中以Pansharp融合算法最好,其次为小波变换算法,IHS算法、PCA算法融合效果最差,这与前人的研究结果基本一致。因此,可以认为Titan Image7.0软件是一种非常好的遥感影像融合平台。 展开更多
关键词 TITAN image QUICKBIRD 影像融合 质量评价
在线阅读 下载PDF
基于Image J软件的肌原纤维蛋白SDS-PAGE优化 被引量:7
15
作者 朱萌 石柳 +4 位作者 汪兰 熊光权 吴文锦 李新 丁安子 《湖北农业科学》 2017年第24期4839-4843,共5页
采用浓缩胶浓度为5%,分离胶浓度为12%的SDS-PAGE凝胶系统,运用Image J软件分析不同蛋白质浓度、pH、NaCl浓度对肌原纤维蛋白的分离效果。结果表明,在蛋白质浓度为1.2 mg/m L、pH为7.5、NaCl浓度为0.5 mol/L时,肌原纤维蛋白中各蛋白质及... 采用浓缩胶浓度为5%,分离胶浓度为12%的SDS-PAGE凝胶系统,运用Image J软件分析不同蛋白质浓度、pH、NaCl浓度对肌原纤维蛋白的分离效果。结果表明,在蛋白质浓度为1.2 mg/m L、pH为7.5、NaCl浓度为0.5 mol/L时,肌原纤维蛋白中各蛋白质及其亚基实现较好分离,均匀分布于整个电泳条带,且各蛋白条带光密度值能清晰分辨。Image J软件能有效地应用于SDS-PAGE图像分析。 展开更多
关键词 肌原纤维蛋白 SDS-PAGE image J软件
在线阅读 下载PDF
Image Quilting纹理合成算法的实现与改进 被引量:4
16
作者 诸葛振荣 杨敏 《机电工程》 CAS 2010年第2期43-45,共3页
针对Image Quilting算法在合成结构性较强的纹理图片时产生局部纹理不连续的问题,提出了一种改进的方法。改进从以下两方面进行:通过图像变形增加样本图的采样空间以增大匹配的概率;改变匹配块的选择策略以提高合成质量。实验结果表明,... 针对Image Quilting算法在合成结构性较强的纹理图片时产生局部纹理不连续的问题,提出了一种改进的方法。改进从以下两方面进行:通过图像变形增加样本图的采样空间以增大匹配的概率;改变匹配块的选择策略以提高合成质量。实验结果表明,改进后的算法有效地改善了纹理不连续现象,生成的纹理图像质量更高。 展开更多
关键词 纹理合成 image QUILTING 图像变形 邻域匹配
在线阅读 下载PDF
基于Image J软件的水稻根毛长度测量 被引量:5
17
作者 付艳茹 须健 《湖北农业科学》 2015年第7期1722-1725,共4页
以体视镜拍摄的水稻(Oryza sativa)中旱5号(ZH5)和珍汕97(ZS97)的主根照片为研究对象,利用图像分析软件Image J建立了一种全新的水稻根毛长度测量方法。在不同的培养时间和培养条件下,分别对位于水稻主根不同部位根毛的长度进行统计,得... 以体视镜拍摄的水稻(Oryza sativa)中旱5号(ZH5)和珍汕97(ZS97)的主根照片为研究对象,利用图像分析软件Image J建立了一种全新的水稻根毛长度测量方法。在不同的培养时间和培养条件下,分别对位于水稻主根不同部位根毛的长度进行统计,得到一组最优的水稻根毛的测量方法和测量条件。用所建立的水稻根毛长度测量体系,对两组肉眼观察根毛长度无明显差异的水稻品种进行了测量,结果表明,此种方法可以检测出两个水稻品种间根毛长度的差异。 展开更多
关键词 水稻(Oryza sativa) 根毛 长度测量 image J软件
在线阅读 下载PDF
西方文化和文论中的Image——从比较文化和比较文论的角度看Image(形象/意象/图像)(之一) 被引量:3
18
作者 张法 《河北学刊》 CSSCI 北大核心 2012年第1期16-19,共4页
Image(形象/图像/意象)是全球化时代文化对话和美学对话中的一个重要主题。从比较文化的角度来看,其在西方主要与三个方面相关:由主客互动而来的影像,主体心理运行的意象,由主体外化而成的艺术形象。这三个方面为image在中国的三种不同... Image(形象/图像/意象)是全球化时代文化对话和美学对话中的一个重要主题。从比较文化的角度来看,其在西方主要与三个方面相关:由主客互动而来的影像,主体心理运行的意象,由主体外化而成的艺术形象。这三个方面为image在中国的三种不同译法奠定了基础。 展开更多
关键词 image 感觉影像 心理意象 艺术形象
在线阅读 下载PDF
访问MS SQL Server Image类型数据的一种简便方法 被引量:4
19
作者 徐俊光 《计算机工程》 CAS CSCD 北大核心 2000年第8期190-191,共2页
介绍了一种用VB或Delphi作为前端程序开发工具时访问大型数据库MS SQL Server数据表Image列的简便方法。
关键词 数据库 SQLSERVER 数据访问 image
在线阅读 下载PDF
应用Image J软件进行图像处理统计织物孔隙率 被引量:16
20
作者 冯爱芬 张永久 《针织工业》 2015年第1期9-11,共3页
应用Image J软件对显微镜下拍摄的织物图像进行处理分析,可以快速、有效地统计出织物的孔隙率。简单介绍图像处理基本原理和Image J软件,并对该软件进行图像处理统计织物孔隙率的方法和步骤进行详细介绍,给出相关图片。该方法适用范围广... 应用Image J软件对显微镜下拍摄的织物图像进行处理分析,可以快速、有效地统计出织物的孔隙率。简单介绍图像处理基本原理和Image J软件,并对该软件进行图像处理统计织物孔隙率的方法和步骤进行详细介绍,给出相关图片。该方法适用范围广,可用于各类织物,不仅克服了通过公式进行理论计算织物孔隙率的繁琐和局限性,而且具有精度高、再现性好等特点。 展开更多
关键词 图像处理 image J软件 织物孔隙率 灰度图像 调整阈值
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部