Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic ac...Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic acid(BHA) was introduced in the flotation of smithsonite from calcite.Microflotation tests revealed that the efficient flotation of smithsonite from calcite could only be obtained with the addition order of BHA before CLS,which was opposite to the widely-used order that adding depressant prior to the collector.The zeta potential measurements indicated that BHA selectively adsorbed onto smithsonite surface,then not allowed the CLS adsorption onto the smithsonite surface rather than calcite surface because of the steric hindrance,thereby the smithsonite surface remained hydrophobic while calcite surface became more hydrophilic after the addition of CLS.As a result,the calcite flotation was completely depressed while the smithsonite flotation recovery was still in high value,leading to the optimal flotation separation performance.展开更多
In this paper,using methyl cinnamate as raw material,the new cinnamic hydroxamic acid collector(CIHA)was synthesized by the hydroxylamine method.The collector performance of hydroxamic acid was investigated for scheel...In this paper,using methyl cinnamate as raw material,the new cinnamic hydroxamic acid collector(CIHA)was synthesized by the hydroxylamine method.The collector performance of hydroxamic acid was investigated for scheelite and gangue calcite,and the flotation separation test of scheelite and calcite was carried out with CIHA as the collector.The interaction mechanism between hydroxamic acid and scheelite minerals has also been investigated through zeta potential,Fourier transform infrared spectroscopy(FTIR)experiments,X-ray photoelectron spectroscopy(XPS)experiments,and density functional theory(DFT)calculation.The single mineral flotation test and artificially mixed ore showed that CIHA had an excellent collection effect and selectivity.Zeta potential,FTIR,and XPS showed that CIHA was adsorbed on the scheelite surface by strong chemical adsorption.The active group of CIHA was analyzed through quantum chemical calculation.It was speculated that C=O and N-O bonds could synthesize a five-membered chelated hydroxamic acid group with Ca element chelate on scheelite surface,changing hydrophobicity and making it more likely to emerge from the pulp.展开更多
基金the support of Natural Science Foundation of China (51804238, 51904214)the Open Foundation of State Key Laboratory of Mineral Processing, BGRIMM Technology (No. BGRIMM-KJSKL-2021-22)the Fundamental Research Funds for the Central Universities (2021IVA110, 2021IVA039)。
文摘Flotation separation of smithsonite from calcite is difficult due to their similar surface properties.In the present study,a reagent scheme of depressant calcium lignosulphonate(CLS) and collector benzyl hydroxamic acid(BHA) was introduced in the flotation of smithsonite from calcite.Microflotation tests revealed that the efficient flotation of smithsonite from calcite could only be obtained with the addition order of BHA before CLS,which was opposite to the widely-used order that adding depressant prior to the collector.The zeta potential measurements indicated that BHA selectively adsorbed onto smithsonite surface,then not allowed the CLS adsorption onto the smithsonite surface rather than calcite surface because of the steric hindrance,thereby the smithsonite surface remained hydrophobic while calcite surface became more hydrophilic after the addition of CLS.As a result,the calcite flotation was completely depressed while the smithsonite flotation recovery was still in high value,leading to the optimal flotation separation performance.
基金the National Nature Science Foundation of China(No.51774152)Jiangxi Provincial Education Department(GJJ200816)+1 种基金“Double height project”in Jiangxi province(No.[2022]223)the National Nature Science Foundation of China(No.52264023).
文摘In this paper,using methyl cinnamate as raw material,the new cinnamic hydroxamic acid collector(CIHA)was synthesized by the hydroxylamine method.The collector performance of hydroxamic acid was investigated for scheelite and gangue calcite,and the flotation separation test of scheelite and calcite was carried out with CIHA as the collector.The interaction mechanism between hydroxamic acid and scheelite minerals has also been investigated through zeta potential,Fourier transform infrared spectroscopy(FTIR)experiments,X-ray photoelectron spectroscopy(XPS)experiments,and density functional theory(DFT)calculation.The single mineral flotation test and artificially mixed ore showed that CIHA had an excellent collection effect and selectivity.Zeta potential,FTIR,and XPS showed that CIHA was adsorbed on the scheelite surface by strong chemical adsorption.The active group of CIHA was analyzed through quantum chemical calculation.It was speculated that C=O and N-O bonds could synthesize a five-membered chelated hydroxamic acid group with Ca element chelate on scheelite surface,changing hydrophobicity and making it more likely to emerge from the pulp.