The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen pro...Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.展开更多
Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the...Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.展开更多
Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation a...Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.展开更多
Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to c...Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.展开更多
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current...Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.展开更多
Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experim...Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experiments were conducted in a tubular fixed-bed flow reactor over a temperature range of 600-800 ℃. The influences of process variables such as temperature, contact time, and water to glycerol ratio on hydrogen yield were investigated and the catalysts were charactered by ICP, BET, XRD and SEM. The results showed that high hydrogen yield was obtained from glycerol by reforming in supercritical water over the Ni/MgO-ZrO2 catalysts in a short contact time. The MgO in the catalyst showed significant promotion effect for hydrogen production likely due to the formation of the alkaline active site. Even when the glycerol feed concentration was up to 45 wt%, glycerol was completely gasified and transfered to the gas products containing hydrogen, carbon dioxide, and methane along with small amounts of carbon monoxide. At a diluted feed concentration of 5 wt%, near theoretical yield of 7 mole of H2/mol of glycerol could be obtained.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic...Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.展开更多
To reduce the energy consumption of the electrolytic hydrogen generation process, we propose a novel approach to generate hydrogen with acidic/alkaline amphoteric water electrolysis, wherein hydrogen is produced insid...To reduce the energy consumption of the electrolytic hydrogen generation process, we propose a novel approach to generate hydrogen with acidic/alkaline amphoteric water electrolysis, wherein hydrogen is produced inside an acidic solution and oxygen evolved under alkaline condition, and a membrane is employed in the middle of the electrolyzer to restrain neutralization. The electrode polarization is greatly reduced due to the specific arrangement of the acidic/alkaline amphoteric electrolyzer. The rate of hydrogen production achieves over four times higher than that of the alkaline aqueous solution at 2.2 V, and the energy consumption is reduced approximately 30% under the current density of 200 m A/cm ^2. The investigation of transmembrane potential drop indicates water splitting on the membrane surfaces, which compensates for acid or alkaline loss on-site and maintains the concentration approximately constant during electrolysis process. The acidic/alkaline amphoteric water electrolysis is promising as an energy saving, clean and sustainable hydrogen production technology.展开更多
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source.Among several hydrogen production methods,it has become the most promising technology.However,there is no large-...Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source.Among several hydrogen production methods,it has become the most promising technology.However,there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production.Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity,which meet the requirements of future development.This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects:electricity,catalyst and electrolyte.In particular,the present situation and the latest progress of the key sources of power,catalytic materials and electrolyzers for electrocatalytic water splitting are introduced.Finally,the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked.It is expected that this review will have an important impact on the field of hydrogen production from water.展开更多
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro...The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.展开更多
Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)...Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.展开更多
Combining urea oxidation reaction(UOR) with hydrogen evolution reaction(HER) is an effective method for energy saving and highly efficient electrocatalytic hydrogen production. Herein, molybdenumincorporated cobalt ca...Combining urea oxidation reaction(UOR) with hydrogen evolution reaction(HER) is an effective method for energy saving and highly efficient electrocatalytic hydrogen production. Herein, molybdenumincorporated cobalt carbonate hydroxide nanoarrays(CoxMoyCH) are designed and synthesized as a bifunctional catalyst towards UOR and HER. Benefiting from the Mo doping, the dispersed nanoarray structure and redistributed electron density, the CoxMoyCH catalyst display outstanding catalytic performance and durability for both HER and UOR, affording the overpotential of 82 m V for HER and delivering a low potential of the 1.33 V for UOR(vs. reversible hydrogen electrode, RHE) to attain a current density of 10 m A cm^(-2), respectively. Remarkably, when CoxMoyCH was applied as bifunctional catalyst in a twoelectrode electrolyzer, a working voltage of 1.40 V is needed in urea-assisted water electrolysis at10 m A cm^(-2) and without apparent decline for 40 h, outperforming the working voltage of 1.51 V in conventional water electrolysis.展开更多
Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can impr...Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.展开更多
Two Cu-Mo-Fe-Ox samples, which can store and supply pure hydrogen through repeated redox reaction (Fe3O4+4H23Fe+4H2O), were prepared by co-precipitation (FCM-C) and impregnation (FCM-I) methods, respectively, ...Two Cu-Mo-Fe-Ox samples, which can store and supply pure hydrogen through repeated redox reaction (Fe3O4+4H23Fe+4H2O), were prepared by co-precipitation (FCM-C) and impregnation (FCM-I) methods, respectively, and the performance of hydrogen production from water were investigated. Compared with the impregnated sample, the co-precipitation sample presented better catalytic activity. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and temperature-programmed reduction (H2-TPR) techniques. XRD, FE-SEM and XPS results suggest that the FCM-C sample has smaller particle size and higher dispersion of iron oxide than that of FCM-I sample. In addition, FT-IR and H2-TPR analyses indicate that the weak interaction among metal oxides in FCM-C sample may induce facile reduction of active metal and superior property of hydrogen production by decomposing water in success展开更多
Hydrogen(H2)production is a latent feasibility of renewable clean energy.The industrial H2 production is obtained from reforming of natural gas,which consumes a large amount of nonrenewable energy and simultaneously p...Hydrogen(H2)production is a latent feasibility of renewable clean energy.The industrial H2 production is obtained from reforming of natural gas,which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide.Electrochemical water splitting is a promising approach for the H2 production,which is sustainable and pollution-free.Therefore,developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world.The utilization of green energy systems to reduce overall energy consumption is more important for H2 production.Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption.A variety of green energy systems for efficient producing H2,such as two-electrode electrolysis of water,water splitting driven by photoelectrode devices,solar cells,thermoelectric devices,triboelectric nanogenerator,pyroelectric device or electrochemical water-gas shift device,have been developed recently.In this review,some notable progress made in the different green energy cells for water splitting is discussed in detail.We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy,which will realize the whole process of H2 production with low cost,pollution-free and energy sustainability conversion.展开更多
The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(...The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.展开更多
Hydrogen has been regarded as a promising renewable and green energy source to meet energy needs and attain net-zero carbon emissions.The electrolysis of seawater to make hydrogen is one of the fascinating development...Hydrogen has been regarded as a promising renewable and green energy source to meet energy needs and attain net-zero carbon emissions.The electrolysis of seawater to make hydrogen is one of the fascinating developments of the twenty-first century.This method uses abundant and relatively inexpensive seawater,as opposed to freshwater,which is rare and can be prohibitively expensive.In recent years,significant research and advancements have been made in direct seawater electrolysis technology for hydrogen production.However,producing highly effective and efficient electrocatalysts with long-term viability under harsh corrosive conditions remains a challenging and severe topic for large-scale seawater electrolysis technology.There is still a large accomplishment gap in understanding how to improve seawater electrolysis to increase hydrogen yields and prolong stability.It is,therefore,crucial to have a condensed knowledge of the tunable and inherent interactions between various electrocatalysts,covering electrolyzer types and paying particular attention to those with high efficiency,chemical stability,and conductivity.The extensive discussion is structured into a progression from noble metals to base metal compounds such as oxides,alloys,phosphides,chalcogenides,hydroxides,and nitrides,MXene-based complexes with a concise examination of hybrid electrocatalysts.In addition,proton exchange membranes,anion exchange membranes,alkaline water electrolyzers,and high-temperature water electrolyzers were potential contributors to seawater’s electrolysis.An extensive assessment of the techno-feasibility,economic insights,and future suggestions was done to commercialize the most efficient electrocatalytic systems for hydrogen production.This review is anticipated to provide academics,environmentalists,and industrial researchers with valuable ideas for constructing and modifying seawater-based electrocatalysts.展开更多
Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world’s carbon neutrality and future sustainable eco-society.Water-splitting is a constructive ...Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world’s carbon neutrality and future sustainable eco-society.Water-splitting is a constructive technology for unpolluted and high-purity H2 production,and a series of non-precious electrocatalysts have been developed over the past decade.To further improve the catalytic activities,metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting(e-DA)properties,while for anion doping,the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances.In this review,we summarize the recent developments of the many different anion-mixed transition metal compounds(e.g.,nitrides,halides,phosphides,chalcogenides,oxyhydroxides,and borides/borates)for efficient water electrolysis applications.First,we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions.Furthermore,some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis.The rationales behind their enhanced electrochemical performances are discussed.Last but not least,the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.展开更多
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20213030040590)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2021K1A4A8A01079455)。
文摘Continuous efforts are underway to reduce carbon emissions worldwide in response to global climate change.Water electrolysis technology,in conjunction with renewable energy,is considered the most feasible hydrogen production technology based on the viable possibility of large-scale hydrogen production and the zero-carbon-emission nature of the process.However,for hydrogen produced via water electrolysis systems to be utilized in various fields in practice,the unit cost of hydrogen production must be reduced to$1/kg H_(2).To achieve this unit cost,technical targets for water electrolysis have been suggested regarding components in the system.In this paper,the types of water electrolysis systems and the limitations of water electrolysis system components are explained.We suggest guideline with recent trend for achieving this technical target and insights for the potential utilization of water electrolysis technology.
基金the financial support from the National Natural Science Foundation of China(52002146).
文摘Hydrogen gas is widely regarded as an ideal green energy carrier and a potential alternative to fossil fuels for coping with the aggravating energy crisis and environmental pollution.Currently,the vast majority of the world's hydrogen is produced by reforming fossil fuels;however,this hydrogen-making technology is not sustainable or environmentally friendly because ofits high energy consumption and large carbon emissions.Renewables-driven water splitting(2H_(2)0-2H_(2)+0_(2))becomes an extensively studied scheme for sustain-able hydrogen production.Conventional water electrolysis requires an input voltage higher than 1.23 V and forms a gas mixture of H_(2)/O_(2),which results in high electricity consumption,potential safety hazards,and harmful reactive oxygen species.By virtue of the auxiliary redox mediators(RMs)as the robust H^(+)/e^(-)reservoir,decoupled electrolysis splits water at a much lower potential and evolves O_(2)(H_(2)O+RMS_(ox)-O_(2)+H-RMS_(red))and H_(2)(H-RMS_(red)-H_(2)+RMS_(ox))at separate times,rates,and spaces,thus pro-ducing the puretarget hydrogen gas safely.Decoupled electrolysis has accelerated the development ofwater electrolysis technology for H_(2) production.However,itis still lack of a comprehensive and in-depth review in this field based on different types of RMs.This review highlights the basic principles and critical progress of this emerging water electrolysis mode over the past decade.Several representative examples are then dis-played in detail according to the differences in the RMs.The rational choice and design of RMs have also been emphasized.Subsequently,novel applications of decoupled water splitting are briefly discussed,including the manufacture of valuable chemicals,Cl_(2) production,pollutant degradation,and other half-reactions in artificial photosynthesis.Finally,thekey characteristics and disadvantages of each type of mediator are sum-marized in depth.In addition,we present an outlook for future directions in decoupled water splitting.Thus,the flexibility in the design of mediators provides huge space for improving this electrochemical technology.@2024 Science Press and Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by ELSEVIER B.V.and Science Press.All rights reserved.
基金supported by the National Key Research and Development Program of China(Program Number 2021YFB4000100)the Beijing Postdoctoral Research Foundation(Grant Number 2023-ZZ-63).
文摘Hydrogen energy,with its abundant reserves,green and low-carbon characteristic,high energy density,diverse sources,and wide applications,is gradually becoming an important carrier in the global energy transformation and development.In this paper,the off-grid wind power hydrogen production system is considered as the research object,and the operating characteristics of a proton exchange membrane(PEM)electrolysis cell,including underload,overload,variable load,and start-stop are analyzed.On this basis,the characteristic extraction of wind power output data after noise reduction is carried out,and then the self-organizing mapping neural network algorithm is used for clustering to extract typical wind power output scenarios and perform weight distribution based on the statistical probability.The trend and fluctuation components are superimposed to generate the typical operating conditions of an off-grid PEM electrolytic hydrogen production system.The historical output data of an actual wind farm are used for the case study,and the results confirm the feasibility of the method proposed in this study for obtaining the typical conditions of off-grid wind power hydrogen production.The results provide a basis for studying the dynamic operation characteristics of PEM electrolytic hydrogen production systems,and the performance degradation mechanism of PEM electrolysis cells under fluctuating inputs.
基金funding provided by the National Key R&D Program of China (Grant No. 2021YFB3801301)National Natural Science Foundation of China (Grant Nos. 22075076, 22208097 and 22378119)Shanghai Pilot Program for Basic Research (22TQ1400100-4)。
文摘Seawater electrolysis for hydrogen production faces inherent challenges, including side reactions, corrosion, and scaling, stemming from the intricate composition of seawater. In response, researchers have turned to continuous water splitting using forward osmosis(FO)-driven seawater desalination. However, the necessity of a neutral electrolyte hampers this strategy due to the limited current density and scarcity of precious metals. Herein, this study applies alkali-durable FO membranes to enable self-sustaining seawater splitting, which can selectively withdraw water molecules, from seawater, via concentration gradient. The membranes demonstrates outstanding perm-selectivity of water/ions(~5830 mol mol^(-1)) during month-long alkaline resistance tests, preventing electrolyte leaching(>97% OHàretention) while maintaining ~95%water balance(V_(FO)= V_(electrolysis)) via preserved concentration gradient for consistent forward-osmosis influx of water molecules. With the consistent electrolyte environment protected by the polyamide FO membranes, the Ni Fe-Ar-P catalyst exhibits promising performance: a sustain current density of 360 m A cmà2maintained at the cell voltage of 2.10 V and 2.15 V for 360 h in the offshore seawater, preventing Cl/Br corrosion(98% rejection) and Mg/Ca passivation(99.6% rejection). This research marks a significant advancement towards efficient and durable seawater-based hydrogen production.
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100).
文摘Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.
基金supported by the National Natural Science Foundation (21076047 and 21276054)the Natural Science Foundation of Zhongkai University of Agriculture and Engineering (G3100026)
文摘Nano ZrO2 and MgO-ZrO2 were prepared by a self-assembly route and were employed as the support for Ni catalysts used in hydrogen production from glycerol reforming in supercritical water (SCW). The reforming experiments were conducted in a tubular fixed-bed flow reactor over a temperature range of 600-800 ℃. The influences of process variables such as temperature, contact time, and water to glycerol ratio on hydrogen yield were investigated and the catalysts were charactered by ICP, BET, XRD and SEM. The results showed that high hydrogen yield was obtained from glycerol by reforming in supercritical water over the Ni/MgO-ZrO2 catalysts in a short contact time. The MgO in the catalyst showed significant promotion effect for hydrogen production likely due to the formation of the alkaline active site. Even when the glycerol feed concentration was up to 45 wt%, glycerol was completely gasified and transfered to the gas products containing hydrogen, carbon dioxide, and methane along with small amounts of carbon monoxide. At a diluted feed concentration of 5 wt%, near theoretical yield of 7 mole of H2/mol of glycerol could be obtained.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金supported by the National Key Research and Development Program(No.2022YFB4202200)the Fundamental Research Funds for the Central Universities.
文摘Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed.
基金financial support provided by the National Natural Science Foundation of China(21776154)the National High Technology Research and Development Program 863 (2012AA051203)
文摘To reduce the energy consumption of the electrolytic hydrogen generation process, we propose a novel approach to generate hydrogen with acidic/alkaline amphoteric water electrolysis, wherein hydrogen is produced inside an acidic solution and oxygen evolved under alkaline condition, and a membrane is employed in the middle of the electrolyzer to restrain neutralization. The electrode polarization is greatly reduced due to the specific arrangement of the acidic/alkaline amphoteric electrolyzer. The rate of hydrogen production achieves over four times higher than that of the alkaline aqueous solution at 2.2 V, and the energy consumption is reduced approximately 30% under the current density of 200 m A/cm ^2. The investigation of transmembrane potential drop indicates water splitting on the membrane surfaces, which compensates for acid or alkaline loss on-site and maintains the concentration approximately constant during electrolysis process. The acidic/alkaline amphoteric water electrolysis is promising as an energy saving, clean and sustainable hydrogen production technology.
基金supported by the National Natural Science Foundation of China(U23A20573,U23A20140,22109038)the Starting Research Funds of Hebei University of Science and Technology,Hebei Natural Science Foundation(D2022208001)+1 种基金the S&T Program of Hebei(23314401D)Hebei Pharmaceutical and Chemical Technology Innovation Center(225676121H).
文摘Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source.Among several hydrogen production methods,it has become the most promising technology.However,there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production.Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity,which meet the requirements of future development.This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects:electricity,catalyst and electrolyte.In particular,the present situation and the latest progress of the key sources of power,catalytic materials and electrolyzers for electrocatalytic water splitting are introduced.Finally,the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked.It is expected that this review will have an important impact on the field of hydrogen production from water.
基金supported by the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.
基金supported by the National Scientific Foundation of China(No.61974050,61704061,51805184,61974049)Key Laboratory of Non-ferrous Metals and New Materials Processing Technology of Ministry of Education/Guangxi Key Laboratory of Optoelectronic Materials and Devices open Fund(20KF-9)+2 种基金the Natural Science Foundation of Hunan Province of China(No.2018TP2003)Excellent youth project of Hunan Provincial Department of Education(No.18B111)State Key Laboratory of Crop Germplasm Innovation and Resource Utilization(No.17KFXN02).The authors thank the technical support from Analytical and Testing Center at Huazhong University of Science and Technology.
文摘Increasing both clean water and green energy demands for survival and development are the grand challenges of our age.Here,we successfully fabricate a novel multifunctional 3D graphene-based catalytic membrane(3D-GCM)with active metal nanoparticles(AMNs)loading for simultaneously obtaining the water purification and clean energy generation,via a“green”one-step laser scribing technology.The as-prepared 3D-GCM shows high porosity and uniform distribution with AMNs,which exhibits high permeated fluxes(over 100 L m^(−2) h^(−1))and versatile super-adsorption capacities for the removal of tricky organic pollutants from wastewater under ultra-low pressure-driving(0.1 bar).After adsorption saturating,the AMNs in 3D-GCM actuates the advanced oxidization process to self-clean the fouled membrane via the catalysis,and restores the adsorption capacity well for the next time membrane separation.Most importantly,the 3D-GCM with the welding of laser scribing overcomes the lateral shear force damaging during the long-term separation.Moreover,the 3D-GCM could emit plentiful of hot electrons from AMNs under light irradiation,realizing the membrane catalytic hydrolysis reactions for hydrogen energy generation.This“green”precision manufacturing with laser scribing technology provides a feasible technology to fabricate high-efficient and robust 3D-GCM microreactor in the tricky wastewater purification and sustainable clean energy production as well.
基金financially supported by the National Natural Science Foundation of China(52025013,22121005)the 111 Project(B12015)+1 种基金Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities。
文摘Combining urea oxidation reaction(UOR) with hydrogen evolution reaction(HER) is an effective method for energy saving and highly efficient electrocatalytic hydrogen production. Herein, molybdenumincorporated cobalt carbonate hydroxide nanoarrays(CoxMoyCH) are designed and synthesized as a bifunctional catalyst towards UOR and HER. Benefiting from the Mo doping, the dispersed nanoarray structure and redistributed electron density, the CoxMoyCH catalyst display outstanding catalytic performance and durability for both HER and UOR, affording the overpotential of 82 m V for HER and delivering a low potential of the 1.33 V for UOR(vs. reversible hydrogen electrode, RHE) to attain a current density of 10 m A cm^(-2), respectively. Remarkably, when CoxMoyCH was applied as bifunctional catalyst in a twoelectrode electrolyzer, a working voltage of 1.40 V is needed in urea-assisted water electrolysis at10 m A cm^(-2) and without apparent decline for 40 h, outperforming the working voltage of 1.51 V in conventional water electrolysis.
基金financially supported by the Key Research and Development Program of Hubei Province (2021BAA208)the National Natural Science Foundation of China (52002294,51974208 and U2003130)+3 种基金the Young Top-notch Talent Cultivation Program of Hubei ProvinceKnowledge Innovation Program of Wuhan-Shuguang Project (2022010801020364)the City University of Hong Kong Strategic Research Grant (SRG) (7005505)the City University of Hong Kong Donation Research Grant (DONRMG 9229021)。
文摘Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality.
基金supported by the National Basic Research Program of China(973 Program,2011CB201202)of Ministry of Science and Technology of China(MOST)
文摘Two Cu-Mo-Fe-Ox samples, which can store and supply pure hydrogen through repeated redox reaction (Fe3O4+4H23Fe+4H2O), were prepared by co-precipitation (FCM-C) and impregnation (FCM-I) methods, respectively, and the performance of hydrogen production from water were investigated. Compared with the impregnated sample, the co-precipitation sample presented better catalytic activity. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and temperature-programmed reduction (H2-TPR) techniques. XRD, FE-SEM and XPS results suggest that the FCM-C sample has smaller particle size and higher dispersion of iron oxide than that of FCM-I sample. In addition, FT-IR and H2-TPR analyses indicate that the weak interaction among metal oxides in FCM-C sample may induce facile reduction of active metal and superior property of hydrogen production by decomposing water in success
基金supported by Taishan Scholars Project Special Funds(tsqn201812083)Natural Science Foundation of Shandong Province(ZR2019YQ20,2019JMRH0410)the National Natural Science Foundation of China(51972147)。
文摘Hydrogen(H2)production is a latent feasibility of renewable clean energy.The industrial H2 production is obtained from reforming of natural gas,which consumes a large amount of nonrenewable energy and simultaneously produces greenhouse gas carbon dioxide.Electrochemical water splitting is a promising approach for the H2 production,which is sustainable and pollution-free.Therefore,developing efficient and economic technologies for electrochemical water splitting has been an important goal for researchers around the world.The utilization of green energy systems to reduce overall energy consumption is more important for H2 production.Harvesting and converting energy from the environment by different green energy systems for water splitting can efficiently decrease the external power consumption.A variety of green energy systems for efficient producing H2,such as two-electrode electrolysis of water,water splitting driven by photoelectrode devices,solar cells,thermoelectric devices,triboelectric nanogenerator,pyroelectric device or electrochemical water-gas shift device,have been developed recently.In this review,some notable progress made in the different green energy cells for water splitting is discussed in detail.We hoped this review can guide people to pay more attention to the development of green energy system to generate pollution-free H2 energy,which will realize the whole process of H2 production with low cost,pollution-free and energy sustainability conversion.
基金sponsored by the National Natural Science Foundation of China (21875133 and 51873100)the Fundamental Research Funds for the Central Universities (GK201901002 and GK201902014)the 111 Project (B14041)。
文摘The ammonia electrolysis is a highly efficient and energy-saving method for ultra-pure hydrogen generation, which highly relies on electrocatalytic performance of electrocatalysts. In this work, high-quality platinum(Pt) nanocubes(Pt-NCs) with 4.5 nm size are achieved by facile hydrothermal synthesis. The physical morphology and structure of Pt-NCs are exhaustively characterized, revealing that Pt-NCs with special {100} facets have excellent uniformity, good dispersity and high crystallinity. Meanwhile, the electrocatalytic performance of Pt-NCs for ammonia electrolysis are carefully investigated in alkaline solutions, which display outstanding electroactivity and stability for both ammonia electrooxidation reaction(AEOR) and hydrogen evolution reaction(HER) in KOH solution. Furthermore, a symmetric Pt-NCs||Pt-NCs ammonia electrolyzer based on bifunctional Pt-NCs electrocatalyst is constructed, which only requires 0.68 V electrolysis voltage for hydrogen generation. Additionally, the symmetric Pt-NCs||Pt-NCs ammonia electrolyzer has excellent reversible switch capability for AEOR at anode and HER at cathode, showing outstanding alternating operation ability for ammonia electrolysis.
基金the support provided by the Deanship of Scientific Research at Majmaah University,P.O.Box 66,Majmaah 11952,Saudi Arabia under Project No.R-2023-6Center for Refining and Advanced Chemicals,Research Institute,King Fahd University of Petroleum and Minerals(KFUPM),Saudi Arabia。
文摘Hydrogen has been regarded as a promising renewable and green energy source to meet energy needs and attain net-zero carbon emissions.The electrolysis of seawater to make hydrogen is one of the fascinating developments of the twenty-first century.This method uses abundant and relatively inexpensive seawater,as opposed to freshwater,which is rare and can be prohibitively expensive.In recent years,significant research and advancements have been made in direct seawater electrolysis technology for hydrogen production.However,producing highly effective and efficient electrocatalysts with long-term viability under harsh corrosive conditions remains a challenging and severe topic for large-scale seawater electrolysis technology.There is still a large accomplishment gap in understanding how to improve seawater electrolysis to increase hydrogen yields and prolong stability.It is,therefore,crucial to have a condensed knowledge of the tunable and inherent interactions between various electrocatalysts,covering electrolyzer types and paying particular attention to those with high efficiency,chemical stability,and conductivity.The extensive discussion is structured into a progression from noble metals to base metal compounds such as oxides,alloys,phosphides,chalcogenides,hydroxides,and nitrides,MXene-based complexes with a concise examination of hybrid electrocatalysts.In addition,proton exchange membranes,anion exchange membranes,alkaline water electrolyzers,and high-temperature water electrolyzers were potential contributors to seawater’s electrolysis.An extensive assessment of the techno-feasibility,economic insights,and future suggestions was done to commercialize the most efficient electrocatalytic systems for hydrogen production.This review is anticipated to provide academics,environmentalists,and industrial researchers with valuable ideas for constructing and modifying seawater-based electrocatalysts.
基金supported by the National Natural Science Foundation of China(Grant No.51802252)Natural Science Foundation of Shaanxi Province(No.2020JM-032)+1 种基金China Postdoctoral Science Foundation(No.2019M663698)the fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP202116).
文摘Hydrogen with high energy density and zero carbon emission is widely acknowledged as the most promising candidate toward world’s carbon neutrality and future sustainable eco-society.Water-splitting is a constructive technology for unpolluted and high-purity H2 production,and a series of non-precious electrocatalysts have been developed over the past decade.To further improve the catalytic activities,metal doping is always adopted to modulate the 3d-electronic configuration and electron-donating/accepting(e-DA)properties,while for anion doping,the electronegativity variations among different non-metal elements would also bring some potential in the modulations of e-DA and metal valence for tuning the performances.In this review,we summarize the recent developments of the many different anion-mixed transition metal compounds(e.g.,nitrides,halides,phosphides,chalcogenides,oxyhydroxides,and borides/borates)for efficient water electrolysis applications.First,we have introduced the general information of water-splitting and the description of anion-mixed electrocatalysts and highlighted their complementary functions of mixed anions.Furthermore,some latest advances of anion-mixed compounds are also categorized for hydrogen and oxygen evolution electrocatalysis.The rationales behind their enhanced electrochemical performances are discussed.Last but not least,the challenges and future perspectives are briefly proposed for the anion-mixed water dissociation catalysts.