期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison of Lubricities of Two Novel Benzotriazole Derivatives Used as Additives in Water-Glycol Hydraulic Fluid 被引量:1
1
作者 Zheng Zhe Wang Jianhua +2 位作者 Fang Jianhua Jiang Zeqi Gu Kecheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期114-124,共11页
Two kinds of benzotriazole derivatives with and without sulfur (abbreviated as BSC and BC, respectively,) were synthesized and their lubricating, anticorrosion and antirust properties were investigated, when they we... Two kinds of benzotriazole derivatives with and without sulfur (abbreviated as BSC and BC, respectively,) were synthesized and their lubricating, anticorrosion and antirust properties were investigated, when they were used as additives in the water-glycol fluid. The morphology and chemical species of typical elements on the worn surface were examined by the scanning electron microscopy (SEM), the energy dispersive spectrometry (EDS), and the X-ray photoelectron spectroscopy (XPS) in order to reveal the tribological mechanisms. The results indicated that two synthesized additives could effectively improve the anti-wear, friction-reducing, load-carrying, anticorrosion, and antirnst properties of the base fluid. The surface analysis illustrated that stable nitrogen-containing absorption films generated by BC should be responsible for its facilitated anti-wear and friction-reducing performance, and the excellent lubricities of BSC should be attxibuted to the combined action of adsorption film and tribo-chemical film which were composed of iron oxides, iron sulfides and iron sulfates. The superior lubricating properties of BSC as compared to that of BC demonstrated the effectiveness of elemental sulfur in reducing friction and wear, especially under high loads. But corrosion wear is more obvious at a relative high concentration of elemental sulfur. 展开更多
关键词 hydraulic fluid water-soluble additives BENZOTRIAZOLE lubricating properties
在线阅读 下载PDF
Temporal variations in geochemistry of hydraulic fracturing fluid and flowback water in a tight oil reservoir
2
作者 Jie Tian Liang Wang +3 位作者 Li-Pin Ni Li-Wei Mou Shu-Te Su Mehdi Ostadhassan 《Petroleum Science》 SCIE EI CSCD 2023年第5期3013-3021,共9页
Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of t... Hydraulic fracturing facilitates the development and exploitation of unconventional reservoirs.In this study,the injected hydraulic fracturing fluid(HFF)and flowback and produced water(FPW)in tight oil reservoirs of the Lucaogou Formation in the Junggar Basin are temporally sampled from day 1 to day 64.Freshwater is used for fracturing,and HFF is obtained.The chemical and isotopic parameters(including the water type,total salinity,total dissolved solids(TDS),pH,concentrations of Na^(+),Cl^(-),Ba^(+),K^(+),Fe^(2+)+Fe^(3+),and CO_(3)^(2-),dD,and δ^(18)O)are experimentally obtained,and their variations with time are systematically analyzed based on the flowback water.The results show that the water type,Na/Cl ratio,total salinity,and TDS of the FPW change periodically primarily due to the HFF mixing with formation water,thus causing δD and δ^(18)O to deviate from the meteoric water line of Xinjiang.Because of watererock interaction(WRI),the concentrations of Fe^(2+)+Fe^(3+)and CO_(3)^(2-)of the FPW increase over time,with the solution pH becoming more alkaline.Furthermore,based on the significant changes observed in the geochemistry of the FPW,three separate time intervals of flowback time are identified:Stage Ⅰ(<10 days),where the FPW is dominated by the HFF and the changes in ions and isotopes are mainly caused by the WRI;Stage Ⅱ(10-37 days),where the FPW is dominated by the addition of formation water to the HFF and the WRI is weakened;and finally,Stage Ⅲ(>37 days),where the FPW is dominated by the chemistry of the formation water.The methodology implemented in this study can provide critical support for the source identification of formation water. 展开更多
关键词 Tight oil reservoirs ISOTOPE Flowback and produced water(FPW) Inorganic ions hydraulic fracturing fluid(HFF)
在线阅读 下载PDF
Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers 被引量:3
3
作者 Arabzadeh Jarkani Soroush Khoshdast Hamid +1 位作者 Shariat Elaheh Sam Abbas 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期123-127,共5页
This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, an... This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing. 展开更多
关键词 hydraulic classifier Modeling Computational fluid dynamic Cut size
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部