Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassem...Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.展开更多
Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annea...Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.展开更多
针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合...针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。展开更多
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi...An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.展开更多
为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级...为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。展开更多
基金supported by the National High Technology Research and Development Program of China(2006AA04Z427).
文摘Disassembly sequence planning (DSP) plays a significant role in maintenance planning of the aircraft. It is used during the design stage for the analysis of maintainability of the aircraft. To solve product disassembly sequence planning problems efficiently, a product disassembly hybrid graph model, which describes the connection, non-connection and precedence relationships between the product parts, is established based on the characteristic of disassembly. Farther, the optimization model is provided to optimize disassembly sequence. And the solution methodology based on the genetic/simulated annealing algorithm with binaxy-tree algorithm is given. Finally, an example is analyzed in detail, and the result shows that the model is correct and efficient.
基金the National Natural Science Foundation of China (60373089, 60674106, and 60533010)the National High Technology Research and Development "863" Program (2006AA01Z104)
文摘Evolutionary computation techniques have mostly been used to solve various optimization problems, and it is well known that graph isomorphism problem (GIP) is a nondeterministic polynomial problem. A simulated annealing (SA) algorithm for detecting graph isomorphism is proposed, and the proposed SA algorithm is well suited to deal with random graphs with large size. To verify the validity of the proposed SA algorithm, simulations are performed on three pairs of small graphs and four pairs of large random graphs with edge densities 0.5, 0.1, and 0.01, respectively. The simulation results show that the proposed SA algorithm can detect graph isomorphism with a high probability.
文摘针对多目标集成工艺规划与车间调度(Integrated Process Planning and Scheduling,IPPS)问题,建立了考虑完工时间、机器负载、总流程时间和机器利用率四个优化目标的IPPS问题模型。基于模拟退火算法和NSGAII算法提出了一种两阶段的混合算法求解多目标IPPS问题。工艺规划阶段以最小化加工时间和机器负载为优化目标生成工件工艺路线,调度阶段以最小化完工时间、总流程时间和最大化机器利用率为优化目标生成调度方案,两个阶段交替迭代,完成问题求解。提出了一种工艺修正策略,对工艺阶段产生的工艺路线进行调整,来提高两个系统间的交互能力,从而提高算法的求解性能。最后设计了对比实验,用三种算法分别求解24组经典的IPPS问题案例。结果表明提出的混合算法和工艺修正策略在寻优能力和解的质量上都优于NSGAII算法,验证了提出的算法解决多目标IPPS问题的有效性。
基金supported by the National Aviation Science Foundation of China(20090196002)
文摘An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.
文摘为解决混合云环境下科学工作流数据布局问题,在考虑数据的安全需求的前提下,以优化跨数据中心传输时延为目标,提出了一种混合云环境下面向安全的科学工作流布局策略。分析数据集的安全需求以及数据中心所能提供的安全服务,提出安全等级分级规则;设计并提出基于遗传算法和模拟退火算法的自适应粒子群优化算法(adaptive particle swarm optimization algorithm based on SA and GA,SAGA-PSO),避免算法陷入局部极值,有效提高种群多样性;与其它经典布局算法对比,基于SAGA-PSO的数据布局策略在满足数据安全需求的同时能够大大降低传输时延。