期刊文献+
共找到541篇文章
< 1 2 28 >
每页显示 20 50 100
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
1
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Hybrid anti-prematuration optimization algorithm
2
作者 Qiaoling Wang Xiaozhi Gao +1 位作者 Changhong Wang Furong Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期503-508,共6页
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici... Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem. 展开更多
关键词 hybrid optimization algorithm artificial immune system(AIS) particle swarm optimization(PSO) clonal selection anti-prematuration.
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
3
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
基于SSAPSO-PID的白胡椒熟化温度控制系统设计与试验
4
作者 俞国燕 张嘉伟 +3 位作者 张园 韦丽娇 赵振华 沈德战 《农业机械学报》 北大核心 2025年第5期589-596,共8页
为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,... 为解决白胡椒初加工生产线熟化环节长时间无法维持恒温控制、过度依赖人工辅助控温等问题,设计了基于PID的白胡椒初加工生产线熟化温度控制系统。利用STM32和触摸屏控制蒸汽发生器和电调节阀,PT100温度传感器实时监测温度并反馈至系统,通过控制算法调节蒸汽流量以确保稳定控制。采用开环阶跃响应法建立并拟合了熟化机内温度与时间的数学模型,通过Simulink仿真试验对比了Ziegler-Nichols整定法、临界比例度法、衰减曲线法以及基于麻雀搜索算法的粒子群优化自整定法(SSAPSO)性能。最终确定PID最佳控制参数为比例系数K_(p)=0.8759,积分系数K_(i)=0.02,微分系数K_(d)=4.3255。系统试验结果表明,在8 min的熟化过程中,每隔1 min采集当前熟化温度,由于熟化机与空气直接对流换热,其温度稳定在(99±1.5)℃范围内,熟化温度平均相对误差小于1.2%、变异系数小于1.3%,基本实现了熟化过程中自动化精准高效控温的目的。 展开更多
关键词 白胡椒初加工生产线 熟化温度 粒子群优化算法 麻雀搜索算法 PID控制
在线阅读 下载PDF
提升LCL型并网逆变器在弱电网下适应性的优化策略
5
作者 王涛 于少娟 刘立群 《电力系统及其自动化学报》 北大核心 2025年第1期26-34,共9页
为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误... 为提升LCL型并网逆变器在弱电网下的适应性,提出一种基于混合粒子群优化算法的控制器参数优化策略。首先,建立传统电网电压全前馈的LCL型并网逆变器模型,采用阻抗稳定性判据分析弱电网下逆变器系统的稳定范围。然后,通过构建包含相角误差和系统稳定性指标在内的多目标函数,并利用混合粒子群优化算法对控制器参数进行优化,进而提高系统在电网阻抗发生变化时的鲁棒性。最后,通过仿真平台以及实验验证了该策略的有效性。 展开更多
关键词 并网逆变器 弱电网 混合粒子群优化算法 多目标优化
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
6
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法
7
作者 徐辉 张顺香 《传感技术学报》 北大核心 2025年第9期1698-1703,共6页
无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群... 无线传感网络环境中的障碍物、干扰信号等阻碍或干扰了信号传输,造成节点间通信质量下降,导致数据包丢失。为此,提出基于邻域搜索粒子群算法的无线传感网络丢包节点定位方法。通过DV-Hop算法初步定位丢包节点并分析定位误差;利用粒子群算法将定位误差最小问题转化为粒子的全局寻优问题,得到的最优粒子位置即为丢包节点位置;基于邻域搜索策略缩小粒子搜索空间,提高粒子群算法全局寻优能力,实现无线传感网络丢包节点定位。仿真结果表明,该方法的丢包节点定位误报率平均值为0.45%,15个丢包节点的定位中仅有1个节点的定位结果与真实坐标存在较小偏差,邻域搜索策略应用后在第20次迭代后适应度函数值迅速降低至0.2,保证了无线传感网络通信质量。 展开更多
关键词 无线传感网络 丢包节点定位 邻域搜索 粒子群算法 DV-HOP算法
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
8
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
9
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
考虑站点转乘的公交接驳地铁站点群线路优化
10
作者 王连震 杜翼飞 +2 位作者 刘克毅 周铭 薛淑祺 《北京交通大学学报》 北大核心 2025年第4期41-51,共11页
为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更... 为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更多换乘的情况加以约束,促使系统在设计时尽可能减少不必要的换乘.引入自适应精英保留策略和惯性系数动态调整策略,设计并采用遗传粒子群混合算法来求解模型.研究结果表明:在接驳公交服务能力方面,相较于原有公交线网,优化后的公交载客量提升约23%;在经济性维度,乘客人均出行成本降低约9%;在算法性能上,所设计的混合优化算法较传统遗传算法运行速度提升15.4%.优化模型在换乘吸引力、人均出行成本等多个关键指标上均优于既有公交线路,验证了模型在提升接驳公交网络运营效率和服务质量方面的有效性,可以为城市公共交通系统的精细化管理和智能化升级提供参考. 展开更多
关键词 城市交通 地铁站点群 接驳公交线路 多目标协同优化 遗传粒子群混合算法
在线阅读 下载PDF
基于毁伤评估结果的无人机对地攻击任务分配方法 被引量:2
11
作者 侯鹏 葛玉雪 +2 位作者 裴扬 岳源 艾俊强 《兵工学报》 北大核心 2025年第2期17-29,共13页
为提升多无人机协同对地打击任务的作战效能并提高协同任务分配效率,提出一种基于作战单元毁伤概率结果的任务分配方法。构建3种典型地面目标毁伤评估模型,计算不同打击方向下各目标的毁伤概率作为任务分配问题的数据支撑。对各无人机... 为提升多无人机协同对地打击任务的作战效能并提高协同任务分配效率,提出一种基于作战单元毁伤概率结果的任务分配方法。构建3种典型地面目标毁伤评估模型,计算不同打击方向下各目标的毁伤概率作为任务分配问题的数据支撑。对各无人机挂载不同武器打击地面目标的典型场景,提出改进混合粒子群优化算法解决任务分配问题。利用遗传算法的交叉、变异操作更新粒子位置,对交叉操作、变异操作进行改进并引入粒子反转操作增加粒子的多样性,避免陷入局部最优。通过仿真算例对所提方法进行验证,结果证明在利用毁伤评估模型计算地面目标的毁伤概率后,所提方法能在满足毁伤要求的前提下得到满足约束条件的任务分配方案,且能提高多无人机体系整体上的作战效能。 展开更多
关键词 多无人机 任务分配 毁伤评估 毁伤概率 混合粒子群优化算法
在线阅读 下载PDF
基于改进粒子群算法的6R机械臂时间最优轨迹规划 被引量:3
12
作者 王迈新 闫莉 李雨菲 《制造技术与机床》 北大核心 2025年第2期36-42,共7页
为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在... 为了提高机械臂的工作效率和稳定性,提出一种改进粒子群算法(particle swarm optimization,PSO)的时间最优5次B样条插值轨迹优化算法。以UR10机械臂为研究对象,首先,利用5次B样条曲线对给定的轨迹点进行插值;其次,针对传统PSO算法存在求解精度低、易陷入局部最优的缺陷,调整算法中的惯性权重和认知因子,使其随着迭代次数的增加而动态改变数值大小,进而提高算法前期全局搜索能力和后期局部搜索能力;最后,通过3种测试函数测试和仿真实验验证,结果表明,改进后的PSO算法的求解精度提升,可以有效提高机械臂的工作效率。 展开更多
关键词 机械臂 5次B样条曲线 粒子群算法 时间最优轨迹规划 全局搜索能力 局部搜索能力
在线阅读 下载PDF
基于GAPSO优化的注塑机注射速度模糊PID控制器 被引量:2
13
作者 张绍坤 沈加明 +2 位作者 胡燕海 傅挺 王舟挺 《计算机工程》 北大核心 2025年第5期239-248,共10页
针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的... 针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的操作繁琐、难以找到最优参数组合等问题,提出一种基于遗传粒子群算法(GAPSO)优化的模糊PID控制方法。对粒子群算法(PSO)进行改进,提出一种惯性因子随S函数变化的改进PSO算法(SDIF-PSO),在改进粒子群算法的基础上,将改进PSO算法与GA算法相结合,构建基于GAPSO算法优化的模糊PID控制器。利用Matlab/Simulink对注射过程进行仿真,实验结果表明,相比于传统的模糊PID控制器以及分别采用改进PSO算法和GA算法优化的模糊PID控制器,基于GAPSO优化的模糊PID控制器具有响应速度更快、超调量更小、稳态精度更高等优点。 展开更多
关键词 伺服电机 注塑机 注射速度 模糊PID 遗传粒子群算法 混合优化算法
在线阅读 下载PDF
舰船专用舱室危险品的三维装箱问题研究与优化
14
作者 张启堂 任鸿翔 +2 位作者 杨晓 王德龙 孙铭泽 《中国航海》 北大核心 2025年第S1期146-154,共9页
舰船专用舱室危险品的合理装箱,对危险品分拣和出库效率有较大影响。在满足三维装箱问题的通用约束和舰船专用舱室特殊约束下,以装入的危险品数量最多为优化目标,构建危险品海上装箱的混合整数规划模型(MIP)。采用粒子群遗传混合算法(PS... 舰船专用舱室危险品的合理装箱,对危险品分拣和出库效率有较大影响。在满足三维装箱问题的通用约束和舰船专用舱室特殊约束下,以装入的危险品数量最多为优化目标,构建危险品海上装箱的混合整数规划模型(MIP)。采用粒子群遗传混合算法(PSOGA),引入启发式规则和平均维度信息,有效加速了算法的执行过程,同时引入了多样性控制机制,提出了两层次搜索策略,进一步提高了搜索效率和结果质量。分别模拟了3种和5种危险品的数据进行装箱试验,表明算法能够在360 s内高效求解所有算例,可为舰船专用舱室危险品装载提供可靠的参考。 展开更多
关键词 多箱型危险品装箱 粒子群遗传混合算法 混合整数规划 舰船专用舱室
在线阅读 下载PDF
基于混合粒子群算法的整周模糊度解算算法
15
作者 彭帮旭 叶金才 刘庆华 《电光与控制》 北大核心 2025年第11期14-19,共6页
为了快速、准确地解算全球卫星导航系统(GNSS)整周模糊度,提出了一种基于混合粒子群搜索(HPSO)算法的整周模糊度解算算法。首先,通过随机学习和社会学习策略改进速度更新公式,增强算法搜索前期的全局探索能力;其次,将模拟退火算法引入... 为了快速、准确地解算全球卫星导航系统(GNSS)整周模糊度,提出了一种基于混合粒子群搜索(HPSO)算法的整周模糊度解算算法。首先,通过随机学习和社会学习策略改进速度更新公式,增强算法搜索前期的全局探索能力;其次,将模拟退火算法引入位置更新公式,增强算法搜索后期的收敛速度和跳出局部最优的能力;最后,通过不同维度的整周模糊度解算实验对算法进行验证,结果表明:在三维解算实验中,HPSO算法的解算成功率与LAMBDA算法和MLAMBDA算法相近,但解算时间较两种算法分别减少了0.0475 s和0.0079 s;多维解算实验中,HPSO算法仍具有较好的实时性和鲁棒性;在实际RTK定位解算中,X、Y、Z方向的定位精度均能控制在0.02 m以内,可以达到厘米级定位。 展开更多
关键词 GNSS 载波相位测量 整周模糊度 混合粒子群算法 模拟退火算法
在线阅读 下载PDF
考虑绿证交易和碳排放约束的交直流混合微网低碳优化调度 被引量:2
16
作者 杨雪梅 张文庆 +2 位作者 邹文文 李斌 陈鑫 《智慧电力》 北大核心 2025年第1期9-16,共8页
在“双碳”背景下,为了降低交直流混合微网的碳排放水平,提出一种考虑绿证交易(GCT)和碳排放的微网低碳优化调度策略。首先,针对交直流混合微网的特点,引入绿证交易机制,以绿证交易成本和发电能耗成本最小为优化目标,建立交直流混合微... 在“双碳”背景下,为了降低交直流混合微网的碳排放水平,提出一种考虑绿证交易(GCT)和碳排放的微网低碳优化调度策略。首先,针对交直流混合微网的特点,引入绿证交易机制,以绿证交易成本和发电能耗成本最小为优化目标,建立交直流混合微网低碳优化模型;其次,引入Tent混沌映射和萤火虫扰动对传统PSO进行改进,以提高模型的求解精度和速度;最后,以某工业园区微电网为例对所提方法进行仿真验证。结果表明,所提方法能够在兼顾经济性和环保性的前提下,有效地控制微网减少碳排放,为交直流混合微网的低碳调度提供了一种新的方法。 展开更多
关键词 交直流混合微网 绿证交易 碳排放约束 优化运行 改进粒子群算法
在线阅读 下载PDF
采用混合算法优化的直流电机PID控制仿真研究
17
作者 续夏光 郭红想 王浩 《中国工程机械学报》 北大核心 2025年第1期44-48,共5页
针对直流电机常规比例-积分-微分(PID)控制系统响应速度慢、超调量较大问题,提出一种混合算法优化PID控制系统。利用d-q坐标轴,建立直流电机的电压、磁链和电磁转矩方程式。利用粒子群算法和引力算法的互补性,设计出一种混合算法。通过... 针对直流电机常规比例-积分-微分(PID)控制系统响应速度慢、超调量较大问题,提出一种混合算法优化PID控制系统。利用d-q坐标轴,建立直流电机的电压、磁链和电磁转矩方程式。利用粒子群算法和引力算法的互补性,设计出一种混合算法。通过混合算法在线优化直流电机PID控制器参数,确保经优化的系统具有更好的响应速度和稳定性,利用Matlab软件对直流电机转速和转矩进行仿真。结果显示:采用混合算法优化PID控制系统,直流电机响应速度快,无超调量情况,在施加负载或增加转速时,直流电机转速和转矩波动幅度较小。采用混合算法优化PID控制系统,可提高直流电机的响应速度,降低直流电机转速输出误差和转矩振动幅度,提高直流电机运行的稳定性。 展开更多
关键词 直流电机 PID控制 粒子群算法 引力算法 优化 仿真
在线阅读 下载PDF
基于模式搜索的粒子群优化光伏MPPT控制研究
18
作者 李润基 孟丽囡 《现代电子技术》 北大核心 2025年第12期83-88,共6页
光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结... 光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结合的最大功率点跟踪控制技术。该技术是将局部探索能力较强的模式搜索算法和全局开采能力较强的粒子群优化算法进行有效结合,从而提高光伏系统在各种环境条件下的效率。通过粒子群优化算法在可行域内进行全局搜索,同时引入柯西变异机制以扩大粒子搜索范围,增强算法的全局寻优能力;并且融合模式搜索法对搜索到的较优解进行局部寻优,以提高解的精度。仿真结果表明,通过两种算法的结合,所提方法能在更短时间内找到全局最大功率点;与标准粒子群优化算法相比,该混合算法在静态局部阴影、动态局部阴影两种工况下都能快速准确地追踪到最大功率点。 展开更多
关键词 最大功率点追踪 模式搜索技术 粒子群优化算法 柯西变异 局部搜索 全局优化
在线阅读 下载PDF
粒子群和强化学习结合的双馈式风机系统模型参数智能辨识方法
19
作者 甄鸿越 赵利刚 +3 位作者 周保荣 赵傲 向轩辰 刁瑞盛 《电力系统及其自动化学报》 北大核心 2025年第8期106-114,共9页
准确辨识风力发电厂模型关键参数对确保电网的安全、稳定和经济运行具有重要意义。提出一种基于粒子群优化(particle swarmoptimization,PSO)和最大熵强化学习框架下的(soft actor-critic,SAC)的混合算法,旨在提高双馈式感应风力发电机... 准确辨识风力发电厂模型关键参数对确保电网的安全、稳定和经济运行具有重要意义。提出一种基于粒子群优化(particle swarmoptimization,PSO)和最大熵强化学习框架下的(soft actor-critic,SAC)的混合算法,旨在提高双馈式感应风力发电机组模型参数辨识的精度和效率。首先,使用双向摄动法对模型参数进行有功-无功灵敏度分析,识别出高灵敏度参数集;其次,使用SAC算法训练智能体模型,对模型坏参数进行初步估计;最后,结合PSO算法进一步优化参数空间,以最小化模型有功-无功动态响应与录波数据的均方误差(mean squareer⁃ror,MSE)。实验结果表明,所提SAC-PSO混合方法在参数辨识方面表现出更高的精度,MSE降低了87.84%,验证了SAC-PSO方法在提高DFIG参数辨识精度和鲁棒性方面的有效性。 展开更多
关键词 深度强化学习 双馈感应发电机 混合算法 参数辨识 粒子群优化
在线阅读 下载PDF
应用多策略改进量子粒子群算法的直流电与Rayleigh波联合反演
20
作者 朱春光 管泓清 +3 位作者 秦天 张富翔 王强 高远 《石油地球物理勘探》 北大核心 2025年第1期137-151,共15页
针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)... 针对浅地表地质分层问题,文中分析了直流电(DC)法与Rayleigh波(RW)法共同探测并进行数据联合反演的可行性,重点研究了融合多种优化策略后形成的基于重心反向学习(Centroid Opposition-Based Learning,COBL)和混沌搜索(Chaos Search,CS)的量子行为粒子群(Quantum-behaved Particle Swarm Optimization,QPSO)算法(简称为COBL-CS-QPSO算法)应用于二者的一维联合反演。通过联合反演可以从电阻率数据中提取层厚信息,弥补单独Rayleigh波反演难以精确解析层厚的问题;同时多策略算法的引入使解在搜索过程中不易陷入局部最优,并加强了不确定环境下的随机搜索效率。理论模型实验考虑了无噪声与有噪声以及已知模型层数与未知模型层数的多种情况,并使模型反演在宽泛的搜索区间内进行,最终取得了良好的反演效果。随后将该联合反演算法应用于实际数据,结果表明基于COBL-CS-QPSO算法的直流电与Rayleigh波联合反演在无钻孔信息或未知地下详细分层的条件下,能够获得相比于单独方法更为准确的结果。同时与自适应粒子群(APSO)算法的对比也体现了改进算法的反演优势。 展开更多
关键词 Rayleigh 波法 直流电法 联合反演 量子行为粒子群算法 重心反向学习 混沌搜索 无限折叠的迭代混 沌映射 浅地表
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部