期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于混合模型的多类型机场航班过站时间预测 被引量:1
1
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
融合边缘信息的三维脑肿瘤图像分割算法 被引量:1
2
作者 田恒屹 王瑜 +1 位作者 马慧鋆 郭朝晖 《传感器与微系统》 北大核心 2025年第5期120-123,128,共5页
脑肿瘤图像分割是临床诊断的关键步骤,针对磁共振成像(MRI)影像中脑肿瘤病灶区域与正常脑组织之间边界模糊的问题,提出一种融合边缘特征的图像分割方法,利用边缘注意模块,有针对性地引导模型关注肿瘤边界区域。同时,设计一种自适应加权... 脑肿瘤图像分割是临床诊断的关键步骤,针对磁共振成像(MRI)影像中脑肿瘤病灶区域与正常脑组织之间边界模糊的问题,提出一种融合边缘特征的图像分割方法,利用边缘注意模块,有针对性地引导模型关注肿瘤边界区域。同时,设计一种自适应加权混合损失函数,在训练过程中自适应调整边缘与肿瘤整体损失部分的权重。利用公开的脑肿瘤数据集进行实验,提出的分割模型对完整肿瘤分割结果的Dice值达到了91.10%。实验结果表明,提出的方法可以显著提升分割精度,特别是边缘部分的分割效果。 展开更多
关键词 深度学习 脑肿瘤分割 边缘注意 混合损失函数
在线阅读 下载PDF
用于脑肿瘤分割的N形神经网络
3
作者 迟孟贤 安虹 +2 位作者 金旭 许延杰 聂振国 《小型微型计算机系统》 北大核心 2025年第2期365-372,共8页
传统的U型神经网络网络在脑肿瘤分割任务中存在高层信息表征能力不足和分割标签不平衡等问题.本文提出了一种新型脑肿瘤分割模型N-Net,能够有效融合多尺度信息,综合考虑全局语义与局部细节,提高了对不同大小肿瘤的分割性能.模型引入特... 传统的U型神经网络网络在脑肿瘤分割任务中存在高层信息表征能力不足和分割标签不平衡等问题.本文提出了一种新型脑肿瘤分割模型N-Net,能够有效融合多尺度信息,综合考虑全局语义与局部细节,提高了对不同大小肿瘤的分割性能.模型引入特征金字塔进行多尺度语义特征的传递,并且采用通道空间融合注意力机制自适应地关注与肿瘤相关区域,此外,本文增加了模型层级并利用残差卷积模块解决梯度消失问题.最后,本文采用改进的混合损失函数应对标签不平衡问题,提高了分割结果的准确性和鲁棒性.在MSD数据集上的实验结果表明,本文提出的方法在多个评估指标上显著优于其他先进模型,展示了其在脑肿瘤分割任务上的有效性. 展开更多
关键词 脑肿瘤分割 特征金字塔 注意力机制 混合损失函数 N形神经网络
在线阅读 下载PDF
基于多数据融合和自适应加权混合损失函数约束的地震波初至智能拾取方法
4
作者 赵军才 马江涛 +3 位作者 刘洋 王宁 胡亚东 谭勇 《石油物探》 北大核心 2025年第4期691-700,共10页
初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此... 初至拾取是地震数据处理的关键环节之一,其拾取精度直接影响速度模型的构建及静校正效果。常规基于卷积神经网络的初至拾取方法虽然效果显著,但在黄土塬等复杂地表地区,由于初至波能量弱、背景噪声强等因素影响,拾取效果往往不佳。为此,提出了一种基于多数据融合和自适应加权混合损失函数约束的深度学习初至拾取方法。首先,将地震记录、偏移距和高程信息进行融合,构建多数据融合模型,提升方法的鲁棒性;然后,通过自适应加权策略优化多个损失函数的组合,构建自适应加权混合损失函数来有效约束模型的训练过程,进而提升模型的初至拾取精度。实际地震数据测试结果表明,在复杂地质条件下的弱初至、强噪声情况下,所提出的初至拾取方法较常用的长/短时窗均值比方法和地震图像深度语义分割方法(简称分割方法)具有更好的拾取效果和更强的抗噪性能,测试结果验证了方法的有效性和鲁棒性。 展开更多
关键词 初至拾取 卷积神经网络 数据融合 自适应加权混合损失函数
在线阅读 下载PDF
多元纤维复合吸波材料设计及电磁性能研究进展 被引量:1
5
作者 朱国松 陈伊 +5 位作者 胡悦 张钦钊 黄佳 周伟 罗衡 李杨 《航空材料学报》 北大核心 2025年第4期1-13,共13页
随着信息安全、目标隐身与电磁防护等需求的升级,亟需研发高效吸波材料。本文简述吸波材料工作原理,并梳理涂覆型与结构型吸波材料研究进展,最终聚焦纤维混杂吸波复合材料的发展:纤维排列、组分调控及界面设计可协同提升电磁性能与力学... 随着信息安全、目标隐身与电磁防护等需求的升级,亟需研发高效吸波材料。本文简述吸波材料工作原理,并梳理涂覆型与结构型吸波材料研究进展,最终聚焦纤维混杂吸波复合材料的发展:纤维排列、组分调控及界面设计可协同提升电磁性能与力学性能。通过多元纤维协同设计与多尺度结构优化,纤维混杂吸波复合材料能够实现阻抗匹配与损耗机制的耦合优化,兼具宽频吸收与力学承载特性,推动吸波材料向结构与功能一体化方向发展。最后,总结通过多元纤维混杂体系拓展吸波频带的技术突破并对未来围绕纤维混杂机制深化、多尺度结构设计、环境适应性提升、多功能集成、纤维取向与入射角协同调控、高温陶瓷基吸波材料等方向开发兼具宽频吸收、轻质高强特性的新一代军民两用吸波材料进行展望。 展开更多
关键词 涂覆型与结构型吸波材料 纤维混杂复合材料 电磁损耗 结构与功能一体化
在线阅读 下载PDF
基于物理信息神经网络的实时混合试验方法
6
作者 龚建勋 杨格 沈晗瑞 《地震工程与工程振动》 北大核心 2025年第3期158-167,共10页
实时混合试验是一种对含速度相关型构件的结构开展抗震性能研究的重要试验方法。然而,目前的实时混合试验面临着数值子结构计算效率难以满足实时性的挑战,限制了该方法在大型工程结构抗震试验中的应用。为了提高数值子结构的计算效率,... 实时混合试验是一种对含速度相关型构件的结构开展抗震性能研究的重要试验方法。然而,目前的实时混合试验面临着数值子结构计算效率难以满足实时性的挑战,限制了该方法在大型工程结构抗震试验中的应用。为了提高数值子结构的计算效率,提出了适用于实时混合试验的物理信息神经网络,实现了神经网络代理模型实时混合试验方法。首先,基于不同物理约束方程构建了神经网络模型;然后,通过有限元软件对2层含阻尼器框架结构进行了地震响应数值模拟,并利用这些模拟数据训练网络模型;最后,利用训练得到的物理信息神经网络开展了实时混合试验仿真。仿真结果表明,物理信息神经网络具备较高的预测精度,其中以恢复力作为损失函数的物理信息神经网络精度最高,基于物理信息神经网络代理模型的实时混合试验方法具备可行性。 展开更多
关键词 实时混合试验 物理信息神经网络 损失函数 代理模型 子结构
在线阅读 下载PDF
多尺度和卷积注意力相结合的红外与可见光图像融合 被引量:2
7
作者 祁艳杰 侯钦河 《红外技术》 CSCD 北大核心 2024年第9期1060-1069,共10页
针对红外与可见光图像融合时,单一尺度特征提取不足、红外目标与可见光纹理细节丢失等问题,提出一种多尺度和卷积注意力相结合的红外与可见光图像融合算法。首先,设计多尺度特征提取模块和可变形卷积注意力模块相结合的编码器网络,多感... 针对红外与可见光图像融合时,单一尺度特征提取不足、红外目标与可见光纹理细节丢失等问题,提出一种多尺度和卷积注意力相结合的红外与可见光图像融合算法。首先,设计多尺度特征提取模块和可变形卷积注意力模块相结合的编码器网络,多感受野提取红外与可见光图像的重要特征信息。然后,采用基于空间和通道双注意力机制的融合策略,进一步融合红外和可见光图像的典型特征。最后,由3层卷积层构成解码器网络,用于重构融合图像。此外,设计基于均方误差、多尺度结构相似度和色彩的混合损失函数约束网络训练,进一步提高融合图像与源图像的相似性。本算法在公开数据集上与7种图像融合算法进行比较,在主观评价和客观评价方面,所提算法相较其它对比算法具有较好的边缘保持性、源图像信息保留度,较高的融合图像质量。 展开更多
关键词 红外与可见光图像 混合损失函数 多尺度特征提取 注意力机制 图像融合
在线阅读 下载PDF
融合CNN和ViT的乳腺超声图像肿瘤分割方法 被引量:3
8
作者 彭雨彤 梁凤梅 《智能系统学报》 CSCD 北大核心 2024年第3期556-564,共9页
针对乳腺超声图像肿瘤区域形状大小差异大导致分割困难,卷积神经网络(convolutional neural networks,CNN)建模长距离依赖性和空间相关性方面存在局限性,视觉Transformer(vision Transformer,ViT)要求数据量巨大等问题,提出一种融合CNN... 针对乳腺超声图像肿瘤区域形状大小差异大导致分割困难,卷积神经网络(convolutional neural networks,CNN)建模长距离依赖性和空间相关性方面存在局限性,视觉Transformer(vision Transformer,ViT)要求数据量巨大等问题,提出一种融合CNN和ViT的分割方法。使用改进的Swin Transformer模块和基于可形变卷积的CNN编码器模块分别提取全局特征和局部细节特征,设计使用交叉注意力机制融合这两种尺度的特征表示,训练过程采取二元交叉熵损失混合边界损失函数,有效提高分割精度。在两个公共数据集上的实验结果表明,与现有经典算法相比所提方法的分割结果有显著提升,dice系数提升3.8412%,验证所提方法的有效性和可行性。 展开更多
关键词 卷积神经网络 乳腺超声图像分割 Swin Transformer 交叉注意力机制 混合损失函数 可形变卷积 多头跳跃注意力 深度学习
在线阅读 下载PDF
一种结合注意力残差的肝脏及肝肿瘤分割算法 被引量:1
9
作者 王峰 邹俊忠 《计算机应用与软件》 北大核心 2024年第1期183-189,197,共8页
长时间的肝脏医学图像人工诊断容易使医生产生疲劳,导致误诊和漏诊情况发生。针对以上现象提出一种改进的Unet网络用于肝脏和肝肿瘤自动分割。改进Unet模型,引入注意力残差结构和特征复用结构,提高输入图像中特征信息的利用效率;对损失... 长时间的肝脏医学图像人工诊断容易使医生产生疲劳,导致误诊和漏诊情况发生。针对以上现象提出一种改进的Unet网络用于肝脏和肝肿瘤自动分割。改进Unet模型,引入注意力残差结构和特征复用结构,提高输入图像中特征信息的利用效率;对损失函数进行改进,在Dice系数中加入欠分割和过分割惩罚因子,提高模型的预测能力。在公开数据集上的实验结果表明:该算法对肝脏和肝肿瘤的分割相似系数分别达到了0.962和0.713,优于现有的分割模型且具有较强的鲁棒性。 展开更多
关键词 Unet 肝肿瘤分割 预处理 混合损失函数 注意力机制 残差连接
在线阅读 下载PDF
基于循环特征推理的大间距缺失地震数据重建方法
10
作者 李紫娟 常光耀 贾永娜 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第9期176-183,共8页
【目的】由于急流、裂谷、高山等自然环境的限制,采集的地震数据会出现大间距缺失的现象,影响后续的地震数据处理和地质分析工作,需要对缺失数据进行插值重建。【方法】为解决大间距地震数据缺失问题,提出一种基于循环特征推理的重建方... 【目的】由于急流、裂谷、高山等自然环境的限制,采集的地震数据会出现大间距缺失的现象,影响后续的地震数据处理和地质分析工作,需要对缺失数据进行插值重建。【方法】为解决大间距地震数据缺失问题,提出一种基于循环特征推理的重建方法。首先缺失的地震数据经过部分卷积运算,在计算过程中根据感受野内有效特征图数据的占比,自适应地调整卷积运算结果的权重,避免在连续缺失的地震道上执行无效的卷积操作。然后采用循环特征推理的方式,逐步对缺失部分进行渐进式重建。部分卷积运算和循环特征推理交替进行,直至所有缺失数据重建完成。最后特征融合每次迭代产生的重建特征,以保证推理的准确性。为增强模型对大间距缺失区域纹理细节的学习能力,结合纹理损失和均方误差函数作为复合损失函数,进一步提高重建精度。【结果和结论】结果显示:(1)基于循环特征推理的方法可以有效重建大间距缺失的地震数据,信噪比在原缺失数据的14.89 dB的基础上提升至28.15 dB。(2)连续缺失30道至80道的多次重建实验中,本方法的重建结果信噪比、结构相似性、均方误差等评价指标均优于U-Net方法。采用6种不同公开数据集测试了本方法的重建效果,进一步证明了本方法的有效性。(3)对比实验探究部分卷积核大小对重建结果的影响表明,当部分卷积核大小为3×3时重建结果信噪比更高并且迭代时间更短。研究成果为大间距缺失地震数据的重建方法提供了新的解决思路。 展开更多
关键词 地震数据重建 部分卷积 循环特征推理 复合损失函数
在线阅读 下载PDF
改进多阶段渐进式的受电弓碳滑板图像去模糊
11
作者 刘伟民 张梦准 +2 位作者 郑爱云 刘晋 郑直 《电子测量技术》 北大核心 2024年第5期85-93,共9页
针对高铁运行速度过快,容易导致受电弓碳滑板的监测图像出现运动模糊问题,提出了一种改进多阶段渐进式网络的图像去模糊方法。首先,引入混合膨胀卷积作为特征提取网络,在不改变计算量和特征图分辨率前提下,可以增大局部感受野,进而可获... 针对高铁运行速度过快,容易导致受电弓碳滑板的监测图像出现运动模糊问题,提出了一种改进多阶段渐进式网络的图像去模糊方法。首先,引入混合膨胀卷积作为特征提取网络,在不改变计算量和特征图分辨率前提下,可以增大局部感受野,进而可获取高质量的图像纹理和细节信息;其次,引入像素点注意力机制,自适应地选择每个像素点的权重值,增强模型去模糊质量;再次,引入混合损失函数,提高模型对不同类型模糊的鲁棒性;最后,制作1600对受电弓碳滑板监测图像合成数据集以供模型进行训练和测试。为了评估所提网络的去模糊效果,将训练所得模型在上述数据集上进行了测试,实验结果表明峰值信噪比达到了38.82 dB、结构相似性达到了0.9723,在视觉上较另外7种经典方法能更好地复原图像的边缘轮廓和纹理细节信息。有效地提升了模型的鲁棒性。 展开更多
关键词 图像去模糊 卷积神经网络 混合膨胀卷积 像素点注意力 混合损失函数
在线阅读 下载PDF
PAW-YOLOv7:河道微小漂浮物检测算法 被引量:4
12
作者 栾庆磊 常昕昱 +3 位作者 吴叶 邓从龙 史艳琼 陈梓华 《光电工程》 CAS CSCD 北大核心 2024年第4期101-113,共13页
河道漂浮物检测对于船舶自动驾驶以及河道清理有着重大意义,但现有的方法在针对河道漂浮物目标尺寸小且互相遮挡、特征信息少时出现检测精度低等问题。为解决这些问题,本文基于YOLOv7,提出了一种改进模型PAWYOLOv7。首先,为了提高网络... 河道漂浮物检测对于船舶自动驾驶以及河道清理有着重大意义,但现有的方法在针对河道漂浮物目标尺寸小且互相遮挡、特征信息少时出现检测精度低等问题。为解决这些问题,本文基于YOLOv7,提出了一种改进模型PAWYOLOv7。首先,为了提高网络模型对小目标的特征表达能力,构建了小目标物体检测层,并将自注意力和卷积混合模块(ACmix)集成应用于新构建的小目标检测层;其次,为了减少复杂背景的干扰,采用全维动态卷积(ODConv)代替颈部的卷积模块,使网络具有捕获全局上下文信息能力;最后,将PConv(partial convolution)模块融入主干网络,替换部分标准卷积,同时采用WIoU(Wise-IoU)损失函数取代CIoU,实现网络模型计算量的降低,提高网络检测速度,同时增加对低质量锚框的聚焦能力,加快模型收敛速度。实验结果表明,PAW-YOLOv7算法在本文利用数据扩展技术改进的FloW-Img数据集上的检测精度达到89.7%,较原YOLOv7提升了9.8%,且检测速度达到54帧/秒(FPS),在自建的稀疏漂浮物数据集上的检测精度比YOLOv7提高了3.7%,能快速准确地检测河道微小漂浮物,同时也具有较好的实时检测性能。 展开更多
关键词 YOLOv7 漂浮物检测 混合卷积自注意力机制 全维动态卷积 Wise-IoU损失函数
在线阅读 下载PDF
基于密集特征推理及混合损失函数的修复算法 被引量:1
13
作者 李海燕 尹浩林 +1 位作者 李鹏 周丽萍 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第9期99-109,共11页
为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块... 为有效解决现有算法修复大面积不规则缺失图像时存在特征利用率低、图像结构连贯性差的问题,提出基于密集特征推理(DFR)及混合损失函数的图像修复算法。修复网络由多个特征推理(FR)模块密集连接组成,首先将待修复图像输入第1个推理模块中进行特征推理,之后将输出特征图通道合并送入下一个推理模块,后续推理的每一个模块的输入都是来自前面所有推理模块的推理特征,如此循环,以充分利用每个推理模块捕获的特征信息;然后提出一个传播一致性注意力机制(PCA),提高修补区域与已知区域的整体一致性;最后,提出混合损失函数(ML)优化修复结果的结构连贯性。整个DFR网络使用组归一化(GN),小批量训练也可达到优异的修复效果。在国际公认的Paris StreetView巴黎街景数据集和CelebA人脸数据集上验证文中所提算法的性能,主客观的实验结果表明:所提算法能有效修复大面积不规则缺失图像,提升特征利用率与结构连贯性,其平均峰值信噪比(PSNR)、平均结构相似度(SSIM)、均方误差(MSE)、弗雷歇距离(FID)及学习感知图像块相似度(LPIPS)指标优于对比算法。 展开更多
关键词 图像修复 密集特征推理 注意力机制 混合损失函数 组归一化
在线阅读 下载PDF
基于多尺度残差双域注意力网络的乳腺动态对比度增强磁共振成像肿瘤分割方法 被引量:1
14
作者 刘侠 吕志伟 +2 位作者 李博 王波 王狄 《电子与信息学报》 EI CSCD 北大核心 2023年第5期1774-1785,共12页
针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺... 针对乳腺肿瘤大小形态多变、边界模糊以及前景与背景间严重类不平衡的问题,该文提出一种多尺度残差双域注意力融合网络。该网络以多尺度卷积构成的多尺度残差块作为基本搭建模块,通过提取多尺度特征和优化梯度传播通道提高其识别不同尺寸目标的能力,同时融入双域注意力单元,提高网络的边缘识别和边界保持能力。另外该文提出一种混合自适应权重损失函数改善网络优化方向,缓解正负样本极度不均衡的影响。实验结果表明,该文所提方法的平均骰子相似系数(Dice)值达到0.8063,较U形网络(UNet)提高5.3%,参数量下降73.36%,具有更优的分割性能。 展开更多
关键词 乳腺肿瘤分割 多尺度残差块 双域注意力 混合自适应权重损失函数
在线阅读 下载PDF
基于鲁棒ν-支持向量机的产品销售预测模型 被引量:3
15
作者 吴奇 严洪森 《计算机集成制造系统》 EI CSCD 北大核心 2009年第6期1081-1087,共7页
产品销售时序通常具有正态高斯分布、幅值较大、奇异点等混合噪音,为此,设计了一种鲁棒损失函数,得到一种新的支持向量机,即鲁棒ν-支持向量机。它可以有效地压制销售时序的多种噪音和奇异点,具有很强的鲁棒性,而且比标准ν-支持向量机... 产品销售时序通常具有正态高斯分布、幅值较大、奇异点等混合噪音,为此,设计了一种鲁棒损失函数,得到一种新的支持向量机,即鲁棒ν-支持向量机。它可以有效地压制销售时序的多种噪音和奇异点,具有很强的鲁棒性,而且比标准ν-支持向量机具有更简洁的对偶优化问题。最后进行了汽车销售预测的实例分析,结果表明,基于鲁棒ν-支持向量机的预测模型是有效可行的。 展开更多
关键词 支持向量机 预测模型 鲁棒损失函数 混合噪音
在线阅读 下载PDF
引入门控轴向自注意力的多通道病理图像分割
16
作者 陈志 李歆 +2 位作者 林丽燕 钟婧 时鹏 《计算机应用》 CSCD 北大核心 2023年第4期1269-1277,共9页
在苏木精-伊红(HE)染色病理图像中,细胞染色分布的不均匀和各类组织形态的多样性给自动化分割带来了极大挑战。针对传统卷积无法捕获大邻域范围内像素间的关联特征,导致分割效果难以进一步提升的问题,提出引入门控轴向自注意力的多通道... 在苏木精-伊红(HE)染色病理图像中,细胞染色分布的不均匀和各类组织形态的多样性给自动化分割带来了极大挑战。针对传统卷积无法捕获大邻域范围内像素间的关联特征,导致分割效果难以进一步提升的问题,提出引入门控轴向自注意力的多通道分割网络(MCSegNet)模型,以实现病理图像细胞核的精准分割。所提模型采用双编码器和解码器结构,在其中使用轴向自注意力编码通道捕获全局特征,并使用基于残差结构的卷积编码通道获取局部精细特征;在编码通道末端,通过特征融合增强特征表示,从而为解码器提供良好的信息基础;而解码器通过级联多个上采样模块逐步生成分割结果。此外,使用改进的混合损失函数有效解决了病理图像中普遍存在的样本不均衡问题。在MoNuSeg2020公开数据集上的实验结果表明,改进的分割方法比U-Net在F1、交并比(IoU)指标上分别提升了2.66个百分点、2.77个百分点,有效改善了病理图像的分割效果,提高了临床诊断的可靠性。 展开更多
关键词 病理图像 细胞核分割 轴向自注意力 残差结构 混合损失函数
在线阅读 下载PDF
基于价值损耗的有轨电车混合动力能量策略比较研究 被引量:4
17
作者 郭爱 陈超 +4 位作者 石俊杰 刘正杰 陈维荣 梁嘉懿 刘楠 《系统仿真学报》 CAS CSCD 北大核心 2021年第3期572-580,共9页
为了全面评价燃料电池有轨电车混合动力系统的经济性和提高系统的耐久性,计及燃料电池和锂电池寿命;提出了一种基于混合动力系统寿命的价值损耗评价函数。采用实测工况的需求功率,利用价值损耗函数对状态机、功率跟随和等效氢耗最小3种... 为了全面评价燃料电池有轨电车混合动力系统的经济性和提高系统的耐久性,计及燃料电池和锂电池寿命;提出了一种基于混合动力系统寿命的价值损耗评价函数。采用实测工况的需求功率,利用价值损耗函数对状态机、功率跟随和等效氢耗最小3种能量方法进行经济性分析。仿真结果表明:状态机策略的价值损耗最小,相比功率跟随和等效氢耗最小策略,该方法使系统的价值损耗分别减小了11.0%,6.3%。 展开更多
关键词 燃料电池 混合动力系统 能量管理策略 价值损耗 评价函数
在线阅读 下载PDF
基于径向基函数神经网络的多级离心压缩机混合模型 被引量:6
18
作者 褚菲 王福利 +1 位作者 王小刚 张淑宁 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1205-1210,共6页
大型离心压缩机作为多影响因素和强非线性的复杂系统,其性能的准确预测难以实现.针对这一问题,结合径向基函数(RBF)神经网络,本文建立了多级离心压缩机性能预测的混合模型.首先基于热力学第一定律和压缩机能量损失机理建立了多级离心压... 大型离心压缩机作为多影响因素和强非线性的复杂系统,其性能的准确预测难以实现.针对这一问题,结合径向基函数(RBF)神经网络,本文建立了多级离心压缩机性能预测的混合模型.首先基于热力学第一定律和压缩机能量损失机理建立了多级离心压缩机性能预测的机理模型.该模型无需任何实验确定的性能曲线,完全由压缩机的几何结构参数预测出压缩机在设计工况和非设计工况下的性能.然后利用RBF神经网络修正机理模型的误差,并通过对RBF神经网络的不断更新,进一步提高了模型的预测精度和适用性.将所建立的混合模型应用于实际的离心压缩机,结果表明该方法具有良好的预测性能. 展开更多
关键词 离心压缩机 性能预测 混合模型 径向基函数神经网络 非线性 能量损失机理
在线阅读 下载PDF
计及样本不平衡与重叠的暂态稳定评估方法 被引量:16
19
作者 李楠 李保罗 +1 位作者 朱建华 李天云 《电力系统自动化》 EI CSCD 北大核心 2020年第21期64-71,共8页
交直流混联系统的稳定性分析复杂且样本不平衡,当前基于数据挖掘的暂态稳定评估方法只追求对不稳定样本的识别精度,忽略了重叠区域样本难分类的问题,导致其综合性能未得到实质性的提升。针对此问题,提出一种计及样本不平衡与重叠的暂态... 交直流混联系统的稳定性分析复杂且样本不平衡,当前基于数据挖掘的暂态稳定评估方法只追求对不稳定样本的识别精度,忽略了重叠区域样本难分类的问题,导致其综合性能未得到实质性的提升。针对此问题,提出一种计及样本不平衡与重叠的暂态稳定评估方法。所提方法通过焦点损失函数来修正轻梯度提升机(LightGBM),自动根据样本的类别以及是否处于重叠区域中的“灰色地带”赋予其不同的权重,从而优化梯度下降的方向。该方法在提升对不稳定样本识别精度的同时,也减少了对稳定样本的误判。在修改的IEEE 68节点系统和中国某省级电网上的算例表明,所提方法在含有噪声且不平衡的数据集上有良好的评估性能。 展开更多
关键词 交直流混联系统 暂态稳定评估 重叠区域样本 样本不平衡 焦点损失函数 轻梯度提升机
在线阅读 下载PDF
基于混合神经网络的多时间尺度负荷预测 被引量:8
20
作者 孙义豪 郭新志 +4 位作者 皇甫霄文 马杰 樊江川 张海峰 任洲洋 《电工电能新技术》 CSCD 北大核心 2023年第8期95-104,共10页
精准的负荷预测对于电力系统保持经济、可靠运行有十分重要的意义,电力系统规划、运行、电力市场竞价系统的设计等都需要不同时间尺度的负荷预测结果,然而现有研究大多围绕一个时间尺度展开,单一模型难以满足实际工程需求。造成这一现... 精准的负荷预测对于电力系统保持经济、可靠运行有十分重要的意义,电力系统规划、运行、电力市场竞价系统的设计等都需要不同时间尺度的负荷预测结果,然而现有研究大多围绕一个时间尺度展开,单一模型难以满足实际工程需求。造成这一现象的原因在于模型预测结果的误差会随着预测时间尺度的延长而出现不同程度的增加,预测难度大,并且影响负荷的因素大多分布在不同时间尺度的数据上,难以充分利用。针对以上问题,本文在考虑负荷曲线的定积分与对应时间内用电量之间约束关系的前提下,提出融合多时间尺度数据的混合神经网络模型。该模型的损失函数同时考虑了点预测结果的误差以及负荷曲线定积分的物理意义,增强了负荷时间序列中各个元素之间的几何相关性。并且利用神经网络将短尺度数据提取为抽象的综合数据后,与长尺度数据拼接组成新的特征向量,用于预测不同时间尺度的负荷值。算例结果表明,本文提出的模型在实际的变压器负荷数据上能够实现多个时间尺度的预测并且有效提高预测精度。 展开更多
关键词 多时间尺度负荷预测 多层混合神经网络 损失函数 多时间尺度数据融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部