期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
1
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
基于改进蜣螂优化算法深度混合核极限学习机的高压断路器故障诊断
2
作者 范兴明 许洪华 +3 位作者 张思舜 李涛 蒋延军 张鑫 《电工技术学报》 北大核心 2025年第12期3994-4003,共10页
针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的... 针对高压断路器机械故障诊断准确率偏低的问题,该文提出一种基于改进蜣螂优化算法(IDBO)优化深度混合核极限学习机(DHKELM)的故障诊断方法。首先,采用逐次变分模态分解(SVMD)对高压断路器合闸振动信号进行分解,得到若干个含本征频率的固有模态分量(IMF);其次,提取各IMF分量的功率谱熵构建特征向量矩阵,并利用t分布-随机邻域嵌入算法(t-SNE)对特征向量进行数据降维;然后,引入融合Tent混沌映射、黄金正弦策略、自适应t分布扰动策略对传统蜣螂优化算法(DBO)进行改进,并使用IDBO对DHKELM进行参数优化,完成IDBO-DHKELM高压断路器故障诊断模型的构建;最后,通过搭建模拟故障的实物断路器实验平台进行验证,结果表明,该文提出的方法在故障诊断上的准确率达到了98.33%,相较于其他故障诊断模型在多项分类评价指标上均有显著提升,为准确、可靠地诊断高压断路器机械故障提供了新方案。 展开更多
关键词 高压断路器 改进蜣螂优化算法 深度混合核极限学习机 故障诊断 逐次变分模 态分解
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
3
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于Munchausen-PER算法优化的混合动力履带车辆能量管理策略
4
作者 路潇然 邹渊 +3 位作者 张旭东 孙巍 孟逸豪 张彬 《兵工学报》 北大核心 2025年第6期125-136,共12页
为优化串联式混合动力履带车辆的燃油经济性及能量管理系统的离线训练用时,提出一种采用蒙乔森(Munchausen)优化算法及优先经验采样(Prioritized Experience Replay,PER)算法的双重深度Q网络(Double-Deep Q_learning Network,DDQN)的能... 为优化串联式混合动力履带车辆的燃油经济性及能量管理系统的离线训练用时,提出一种采用蒙乔森(Munchausen)优化算法及优先经验采样(Prioritized Experience Replay,PER)算法的双重深度Q网络(Double-Deep Q_learning Network,DDQN)的能量管理策略。通过包含发动机发电机组、动力电池组及驱动电机的模型对整车功率需求进行解算,根据功率需求,用能量管理控制策略对发动机节气门开度进行最优控制。采用蒙乔森优化算法、PER算法共同作用于离散型DDQN,同时提高网络对高影响数据的选取训练概率及对最优解的专注训练能力,在2种算法共同作用下DDQN能量管理策略的燃油经济性可实现对连续型复杂神经网络的超越,同时具有较大的离线训练用时优势。仿真实验结果表明:与基于PER的双延迟深度确定性策略梯度算法相比,新的能量管理控制策略可使得串联式混动履带车的燃油经济性平均提高4.6%,控制策略训练用时平均优化了35.3%。 展开更多
关键词 串联式混动履带车 Munchausen优化算法 优先经验采样算法 深度强化学习 能量管理策略
在线阅读 下载PDF
基于状态空间扩展的深度强化学习混合流水车间调度
5
作者 汤怀钰 王聪 +2 位作者 张宏立 马萍 董颖超 《组合机床与自动化加工技术》 北大核心 2025年第4期195-200,共6页
针对混合流水车间调度问题(hybrid flow shop problem, HFSP),以最小化最大完工时间和最小总能耗为求解目标,提出一种基于状态空间扩展的深度强化学习新方法。将状态特征由传统单一方式转变为多特征状态元组,并通过引入新的动作选择规... 针对混合流水车间调度问题(hybrid flow shop problem, HFSP),以最小化最大完工时间和最小总能耗为求解目标,提出一种基于状态空间扩展的深度强化学习新方法。将状态特征由传统单一方式转变为多特征状态元组,并通过引入新的动作选择规则来优化加工机器的选择。设计了奖励机制为最大加工时间和能耗的负相关,激励系统在调度过程中尽量减少加工时间和总能耗从而更有效地利用资源。通过将PPORL方法应用于不同数据集进行仿真实验,并与现有算法比较,结果表明,所提方法具有更强的稳定性、探索性和泛化能力,显著提高了调度效率和资源利用率,有效地解决了多目标混合流水车间调度问题。 展开更多
关键词 节能减排 混合流水车间调度 深度强化学习 近端策略优化算法
在线阅读 下载PDF
基于TVFEMDⅡ-十种鱼群算法-DHKELM模型的日含沙量预测 被引量:1
6
作者 邓智予 谢静 崔东文 《中国农村水利水电》 北大核心 2025年第3期61-70,共10页
为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算... 为提高日含沙量时间序列预测精度,改进深度混合核极限学习机(DHKELM)预测性能,对比验证十种鱼群算法——电鳗觅食优化算法(EEFO)/成吉思汗鲨鱼优化(GKSO)算法/白鲸优化(BWO)算法/白鲨优化(WSO)算法/鲸鱼优化算法(WOA)/金枪鱼优化(TSO)算法/旗鱼优化(SFO)算法/海洋捕食者算法(MPA)/?鱼优化算法(ROA)/蝠鲼觅食优化(MRFO)算法在基准测试函数和实例目标函数上的优化效果,提出时变滤波器经验模态二次分解(TVFEMDⅡ)-十种鱼群算法-DHKELM日含沙量时间序列预测模型。首先,利用TVFEMDⅡ对日含沙量时间序列进行分解处理,得到若干分解分量,合理划分训练集和预测集;其次,基于各分量训练集构建DHKELM超参数优化实例目标函数,同时选取8个基准测试函数作为对比验证函数,利用十种鱼群算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立TVFEMDⅡ-十种鱼群算法-DHKELM模型,通过云南省龙潭站汛期日含沙量预测实例对各模型进行验证。结果表明:(1)十种鱼群算法对基准测试函数寻优总排名与对实例目标函数寻优总排名仅有10%相同,总体上EEFO、GKSO寻优效果较好,ROA、WSO较差。(2)十种鱼群算法对实例目标函数寻优总排名与十种鱼群算法优化的各模型预测精度总排名基本一致,表明鱼群算法极值寻优能力越强,其优化获得的DHKELM超参数越优,由此构建的预测模型性能越好,日含沙量预测精度越高。(3)TVFEMDⅡ-十种鱼群算法-DHKELM模型对实例日含沙量预测的平均绝对百分比误差(MAPE)在0.927%~1.583%之间,模型计算规模小、预测精度高、稳健性能好,具有较好的实用价值和意义。(4)在分解分量十分有限的情形下,TVFEMDⅡ能将复杂的日含沙量时间序列分解为更具规律、更易建模预测的模态分量,大大改进时间序列分解效果,显著提升日含沙量预测精度。 展开更多
关键词 日含沙量预测 时变滤波器经验模态分解 二次分解 十种鱼群算法 深度混合核极限学习机 函数优化
在线阅读 下载PDF
基于IDBO-HKELM的冷水机组故障诊断方法
7
作者 王宏 储盼 +3 位作者 管大松 郭洋 田增瑞 盛英杰 《科学技术与工程》 北大核心 2025年第22期9505-9513,共9页
冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习... 冷水机组作为建筑中的关键设备和主要能耗源,若其发生故障不仅会影响系统的正常运行,还会造成严重的能源浪费。为提升冷水机组系统运行的可靠性,构建了一种多策略改进蜣螂优化算法(improve dung beetle optimizer,IDBO)和混合核极限学习机(hybrid kernel extreme learning machine,HKELM)融合的故障诊断模型,用于实现冷水机组早期故障的精确诊断。该模型首先采用混合核函数提高核极限学习机(kernel extreme learning machine,KELM)的学习能力和泛化性,其次将Bernoulli映射、自适应惯性因子和Levy飞行融合动态权重系数策略用于改进蜣螂优化算法(dung beetle optimizer,DBO),以平衡DBO算法的全局探索性能。最后通过基准函数验证IDBO算法的有效性,利用IDBO算法对HKELM超参数进行优化,从而构建用于冷水机组早期故障诊断的数据驱动模型。通过相关训练仿真和实验验证,所提出的IDBO-HKELM模型对冷水机组的早期故障诊断准确率提高到99.71%,对比其他算法具有明显优势。 展开更多
关键词 冷水机组 群体算法 HKELM IDBO算法 故障诊断
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:5
8
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
基于IHHO-HKELM输电线路覆冰预测模型 被引量:5
9
作者 黄力 宋爽 +4 位作者 刘闯 王骏骏 胡丹 何其新 鲁偎依 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期33-41,共9页
为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中... 为了进一步提高输电线路覆冰预测精度,提出一种基于改进哈里斯鹰算法(improved harris hawk optimiza-tion,IHHO)优化混合核极限学习机(hybrid kernel extreme learning machine,HKELM)的输电线路覆冰预测模型。在核极限学习机(KELM)中引入混合核函数,形成HKELM,利用黄金正弦、非线性递减能量指数和高斯随机游走等策略对IHHO算法进行改进;以IHHO算法的优化性能采用其对HKELM的权值向量和核参数进行优化,建立基于IHHO-HKELM的输电线路覆冰预测模型,并通过计算气象因素与覆冰厚度之间的灰色关联度确定覆冰预测模型的输入量。算例分析结果表明,IHHO-HKELM模型预测结果的均方误差、最大误差和平均相对误差分别为0.285、0.860 mm和2.83%,预测效果好于其他模型,将本文覆冰预测模型应用于其他覆冰线路,可获得良好的应用效果并验证模型的优越性和实用性。 展开更多
关键词 输电线路 覆冰预测 核极限学习机 混合核函数 改进哈里斯鹰算法
在线阅读 下载PDF
基于HMFDE和t-SNE的旋转机械故障诊断方法 被引量:4
10
作者 尹久 张杰 《机电工程》 CAS 北大核心 2024年第6期1058-1067,共10页
针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用... 针对旋转机械的故障特征提取较难,以及单一类型的特征无法全面反映故障特性的问题,提出了一种基于混合多尺度波动散布熵(HMFDE)、t分布-随机邻域嵌入(t-SNE)和郊狼优化算法(COA)优化极限学习机(ELM)的旋转机械故障诊断方法。首先,采用特征加权提出了混合多尺度波动散布熵方法,并将其用于提取旋转机械振动信号的故障特征;随后,采用t-SNE方法对混合故障特征进行了特征降维,挑选出了最能够反映故障特性的特征子集,构建了敏感特征样本;最后,采用郊狼优化算法对极限学习机的输入权重和隐含层阈值进行了优化,完成了旋转机械的故障识别和分类;以齿轮箱和滚动轴承故障数据集为对象,对基于HMFDE、t-SNE和COA-ELM的故障诊断方法进行了实验,验证了方法的有效性。研究结果表明:采用HMFDE-t-SNE-CAO-ELM故障诊断方法可以取得100%的故障识别准确率,该方法能够有效地诊断旋转机械的不同故障类型和损伤;相较于基于单一类型特征的故障诊断方法,其准确率分别可以提高0.68%、22.42%、29.18%(齿轮箱)和1.43%、8.23%、23.67%(滚动轴承),虽然牺牲了一定的计算效率,但准确率得到了明显的提高;相较于其他常规故障分类器,COA-ELM的故障识别准确率具有明显的优势。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 滚动轴承 混合多尺度波动散布熵 t分布-随机邻域嵌入 郊狼优化算法 极限学习机
在线阅读 下载PDF
基于GRO优化的VMD-HKELM月蒸发量预测方法研究 被引量:2
11
作者 李菊 崔东文 《水文》 CSCD 北大核心 2024年第5期25-31,共7页
水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提... 水面蒸发预测对于水库水量预测、区域水量平衡分析和水资源量核算等具有重要意义。水面蒸发量预测影响因素众多,并最终体现在随时间变化的蒸发量监测数据中。为此,基于淘金热(GRO)算法优化变分模态分解(VMD)-混合核极限学习机(HKELM)提出两种方案。方案Ⅰ先对月蒸发量时间序列分解,后划分训练集、测试集;方案Ⅱ先对月蒸发量划分训练集、测试集,再进行时间序列分解。通过一种新型元启发式算法对分解技术VMD、预测器HKELM超参数进行目标寻优并建立多种模型,采用云南省龙潭寨、西洋街水文站月蒸发量预测实例对方案Ⅰ、方案Ⅱ各模型进行检验。结果表明:方案Ⅰ各模型性能优于方案Ⅱ,各模型的拟合精度和预测精度总体上随分解分量数的增加而提高,但方案Ⅰ使用了测试集信息,导致预测精度虚高;方案Ⅱ各模型具有较好的预测精度和稳健性能,其用于月蒸发量时间序列预测是可行的,反映出客观真实的预测效果,具有较好的实用价值和意义。 展开更多
关键词 变分模态分解 淘金热优化算法 混合核极限学习机 超参数优化 月蒸发量预测
在线阅读 下载PDF
基于混合优化算法和深度神经网络模型结合的致密砂岩气藏裂缝参数优化 被引量:1
12
作者 罗山贵 赵玉龙 +4 位作者 肖红林 陈伟华 贺戈 张烈辉 杜诚 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期140-151,共12页
水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且... 水平井分段压裂是致密砂岩气藏的主要开发方式,其中水力压裂裂缝参数的合理设计对于气藏的经济效益开发至关重要。基于群智能优化算法和机器学习代理模型的自动优化方法存在所需数值模拟次数多、收敛速度慢和代理模型更新复杂等问题,且依靠现场工程师经验和正交实验等传统方法难以获得最佳的裂缝参数设计。为此,建立了一种新的基于混合优化算法和自适应深度神经网络(DNN)结合的致密气藏裂缝参数优化方法。首先,混合优化算法采用遗传算法(GA)和贝叶斯自适应直接搜索(BADS)之间循环迭代的混合策略。在自适应学习过程中,提出了以“最大平均距离点”作为最不确定解,同时辅以最有希望解和少量拉丁超立方采样解共同更新优化过程中的DNN代理模型。随后,将建立的优化方法用于非均质致密砂岩气藏裂缝参数优化。研究结果表明:(1)在标准测试函数和低维裂缝参数优化问题上,GA+BADS混合优化算法表现出了显著优于GA的寻优速度;(2)针对高维裂缝参数优化问题,GA+BADS混合优化算法在约1/2的GA总数值模拟次数下提高了131万元的经济净现值(NPV),收敛速度和寻优精度都明显增加;(3)相比于GA+BADS混合优化算法,在获得相同NPV时,自适应DNN代理加速优化可再减少24.54%的数值模拟运算次数。结论认为,该优化方法显著提升了优化效率,为解决非常规油气藏中水力压裂裂缝参数设计问题提供了一套可行且高效的智能优化方法,将有力促进非常规油气的规模效益开发。 展开更多
关键词 致密气 沙溪庙组 裂缝参数优化 混合优化算法 深度神经网络 自适应学习 代理模型
在线阅读 下载PDF
基于OVMD-HWOA-KELM模型的变压器油中溶解气体体积分数预测方法 被引量:5
13
作者 谢明浩 张林鍹 +1 位作者 董小刚 许晋闻 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3793-3804,I0037,I0038,I0039,共15页
针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kern... 针对变压器油中溶解气体序列波动性、随机性较强难以精确预测的问题,提出一种基于最优变分模态分解(optimal variational mode decomposition,OVMD)、混合型鲸鱼优化算法(hybrid whale optimization algorithm,HWOA)和核极限学习机(kernel extreme learning machine,KELM)的组合预测模型。首先,运用OVMD获取最优分解参数,并将原始序列分解为一系列相对平稳的分量;其次,通过在鲸鱼种群中融入混沌映射、非线性收敛参数、自适应权重因子和改进的算术优化算法提出HWOA算法,并利用测试函数验证HWOA算法的优越性;然后,对各分量分别构建KELM预测模型,使用HWOA优化KELM的关键参数。最后,将各分量的预测结果叠加重构,得到最终预测结果。案例分析表明,所提模型对变压器正常和异常案例预测的决定系数分别可达97.7%和93.46%,相较于现存方法,该模型具有更好的准确性和适应性,可为电力变压器运维管理提供有利技术支撑。 展开更多
关键词 油中溶解气体 最优变分模态分解 融合型鲸鱼优化算法 核极限学习机 变压器状态预测
在线阅读 下载PDF
信息年龄约束下的无人机数据采集能耗优化路径规划算法 被引量:2
14
作者 高思华 刘宝煜 +3 位作者 惠康华 徐伟峰 李军辉 赵炳阳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第10期4024-4034,共11页
信息年龄(AoI)是评价无线传感器网络(WSN)数据时效性的重要指标,无人机辅助WSN数据采集过程中采用优化飞行轨迹、提升速度等运动策略保障卸载至基站的数据满足各节点AoI限制。然而,不合理的运动策略易导致无人机因飞行距离过长、速度过... 信息年龄(AoI)是评价无线传感器网络(WSN)数据时效性的重要指标,无人机辅助WSN数据采集过程中采用优化飞行轨迹、提升速度等运动策略保障卸载至基站的数据满足各节点AoI限制。然而,不合理的运动策略易导致无人机因飞行距离过长、速度过快产生非必要能耗,造成数据采集任务失败。针对该问题,该文首先提出信息年龄约束的无人机数据采集能耗优化路径规划问题并进行数学建模;其次,设计一种协同混合近端策略优化(CH-PPO)强化学习算法,同时规划无人机对传感器节点或基站的访问次序、悬停位置和飞行速度,在满足各传感器节点信息年龄约束的同时,最大限度地减少无人机能量消耗。再次,设计一种融合离散和连续策略的损失函数,增强CH-PPO算法动作的合理性,提升其训练效果。仿真实验结果显示,CH-PPO算法在无人机能量消耗以及影响该指标因素的比较中均优于对比的3种强化学习算法,并具有良好的收敛性、稳定性和鲁棒性。 展开更多
关键词 无线传感器网络 信息年龄约束 协同混合近端策略优化算法 无人机路径规划 深度强化学习
在线阅读 下载PDF
考虑碎冰阻力和静水阻力的高效船型多目标优化方法 被引量:1
15
作者 王世超 刘刚 《中国舰船研究》 CSCD 北大核心 2024年第6期97-107,共11页
[目的]针对碎冰环境对船舶性能的影响,以及基于经验公式的传统优化方法在碎冰阻力优化方面的局限性,基于CFD&DEM方法提出一种精确优化碎冰阻力和静水阻力的船型优化方法。[方法]首先,基于CFD和CFD&DEM方法计算静水阻力和碎冰阻... [目的]针对碎冰环境对船舶性能的影响,以及基于经验公式的传统优化方法在碎冰阻力优化方面的局限性,基于CFD&DEM方法提出一种精确优化碎冰阻力和静水阻力的船型优化方法。[方法]首先,基于CFD和CFD&DEM方法计算静水阻力和碎冰阻力,提出一种创新的混合多岛遗传算法(HMIGA),用于模拟真实环境下的碎冰场;然后,结合XGBoost模型建立高效代理模型,并执行NSGA-III算法进行优化求解;最后,以KCS标准模型为例进行验证。[结果]结果显示,优化后船型的碎冰阻力降低了10.58%,静水阻力降低了2.32%;优化船型所承受的峰值载荷更少,同时通过产生波浪推开浮冰,还可进一步降低冰阻力。[结论]所提方法综合考虑了流场和碎冰场的随机性对优化结果的影响,能更精确、有效地改善船舶的碎冰阻力与静水阻力。HMIGA算法和XGBoost模型的引入可提升方法的实际应用效果,从而为未来碎冰环境下船舶的优化设计提供指导。 展开更多
关键词 船舶设计 船型优化设计 多目标优化 计算流体力学 离散元方法 混合多岛遗传算法 集成学习
在线阅读 下载PDF
学习驱动的分布式异构混合流水车间批量流能效调度优化 被引量:1
16
作者 邵炜世 皮德常 邵仲世 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1018-1028,共11页
本文研究了分布式异构混合流水车间批量流能效调度问题,其中每个工厂的加工效率不同,工件可以分割成若干子批进入加工系统.以最大完成时间和总能耗为优化目标,建立了混合整数规划模型.本文提出了一种学习驱动的多目标进化算法,包括学习... 本文研究了分布式异构混合流水车间批量流能效调度问题,其中每个工厂的加工效率不同,工件可以分割成若干子批进入加工系统.以最大完成时间和总能耗为优化目标,建立了混合整数规划模型.本文提出了一种学习驱动的多目标进化算法,包括学习驱动的全局搜索和局部搜索.引入Q学习作为学习引擎,以种群和非支配解集的评价作为环境反馈信号,通过不断的学习来动态指导搜索操作的选择;基于问题特征,设计了算法的状态集、动作集和奖励机制.Q学习的引入能够及时感知当前搜索的状态,减少搜索操作的盲目性,提高搜索的效率.通过对仿真数据集的测试,表明所提出算法能够有效地求解分布式异构混合流水车间批量流能效调度问题. 展开更多
关键词 分布式异构混合流水车间 批量流调度 学习驱动的多目标进化算法 整数规划 能效优化
在线阅读 下载PDF
基于混合双层自组织径向基函数神经网络的优化学习算法
17
作者 杨彦霞 王普 +2 位作者 高学金 高慧慧 齐泽洋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期38-49,共12页
针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,H... 针对传统方法采用先训练后测试两阶段学习机制极易导致的过拟合或欠拟合问题,提出一种基于混合双层自组织径向基函数神经网络的优化学习(hybrid bilevel self-organizing radial basis function neural network optimization learning,Hb-SRBFNN-OL)算法。首先,将训练过程和测试过程集成到一个统一的框架中,规避过拟合或欠拟合问题。其次,基于进化学习机制,提出上下2层的交互式优化学习算法,上层基于网络复杂度和测试误差自组织调整网络结构,下层采用列文伯格-马夸尔特(Levenberg Marquardt,LM)算法作为优化器对自组织径向基函数神经网络(self-organizing radial basis function neural network,SO-RBFNN)的连接权值进行优化。最后,利用来自多个子网络的综合信息生成模型的最终输出,加速网络全局收敛。为验证所提方法的可行性,分别在多个分类和预测任务中进行了测试实验。结果表明,在与传统神经网络结构相似甚至更好的测试和分类精度下,该方法不仅能实现更快的训练收敛,而且能进化成更精简紧凑的径向基函数神经网络(radial basis function neural network,RBFNN)模型。尤其在污水处理过程中总磷的质量浓度预测实验中,测试集中均方根误差(root mean squared error,RMSE)最高可降低48.90%,实际场景实验结果验证了所提算法的精确性更佳且泛化能力更强。 展开更多
关键词 径向基函数神经网络(radial basis function neural network RBFNN) 自组织 列文伯格-马夸尔特(Levenberg Marquardt LM)算法 混合双层 优化学习 泛化性能
在线阅读 下载PDF
多极小波包变换与改进浣熊算法优化的混合核极限学习机径流预测 被引量:4
18
作者 刀海娅 程刚 崔东文 《中国农村水利水电》 北大核心 2024年第6期1-9,20,共10页
为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和... 为提高日径流多步预测精度,减少模型计算规模,同时提升浣熊优化(COA)算法和混合核极限学习机(HKELM)性能,提出多极小波包变换(MWPT)-改进COA算法(ICOA)-HKELM日径流时间序列预测模型。首先,利用MWPT将日径流时序数据分解为1个低频分量和2个高频分量,并构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;其次,简要介绍COA算法原理,基于Circle映射等策略对COA进行改进,提出ICOA算法,通过8个典型函数对ICOA算法进行仿真验证,并与基本COA算法、鲸鱼优化算法(WOA)、灰狼优化算法(GWO)作对比,旨在验证ICOA算法的优化性能;最后,利用ICOA优化HKELM超参数(正则化参数、核参数、权重系数),建立MWPT-ICOA-HKELM模型,并构建MWPT-COA-HKELM、MWPT-WOA-HKELM、MWPT-GWO-HKELM、小波包变换(WPT)-ICOA-HKELM、小波变换(WT)-ICOA-HKELM、MWPT-ICOA-BP模型作对比分析,通过云南省景东、把边水文站2016-2020年日径流时间序列多步预测实例对各模型进行验证。结果表明:(1)ICOA具有较好的改进效果,仿真精度优于COA、WOA、GWO算法。(2)MWPT-ICOA-HKELM模型预测效果优于其他对比模型,其对实例单步预测效果“最好”,超前3步和超前5步“较好”,超前7步“较差”,预测精度随预测步长的增加而降低。(3)利用ICOA优化HKELM超参数,可显著提高HKELM预测性能,超参数优化效果优于COA、WOA、GWO算法。 展开更多
关键词 日径流预测 多极小波包变换 改进浣熊优化算法 混合核极限学习机 超参数优化
在线阅读 下载PDF
基于PSO-XGBoost的露天矿山PPV预测模型研究 被引量:2
19
作者 李振阳 张宝岗 +2 位作者 熊信 杨承业 白玉奇 《黄金科学技术》 CSCD 北大核心 2024年第4期620-630,共11页
爆破振动的质点峰值速度(Peak Particle Velocity,PPV)是评估爆破开采设计参数合理性的重要指标。为实现一种PPV有效预测模型,借助粒子群优化算法(Particle Swarm Optimization,PSO),结合优化极端梯度提升树(Extreme gradient boosting,... 爆破振动的质点峰值速度(Peak Particle Velocity,PPV)是评估爆破开采设计参数合理性的重要指标。为实现一种PPV有效预测模型,借助粒子群优化算法(Particle Swarm Optimization,PSO),结合优化极端梯度提升树(Extreme gradient boosting,XGBoost),构建了一种参数自优化的PSO-XGBoost预测模型。以LK露天铜钴矿为研究对象,选取最大单段炸药量、总炸药量、测量的爆心距、炮孔平均进深尺度和高程差共5个影响因素指标作为研究参数,通过现场收集187次爆破作业实测数据,进一步开展PPV的PSO-XGBoost预测研究,并与传统XGBoost模型、SSA-XGBoost优化模型及萨道夫斯基经验公式的PPV回归预测进行对比分析,最后利用Shapley Additive Explanatory(SHAP)方法开展影响PPV预测结果的敏感性因素分析。结果表明:PSO-XGBoost预测模型的预测评价指标计算结果最优(R^(2)=0.921,RMSE=0.0752,MAE=0.0717,MBE=0.0683),其对PPV的预测结果明显优于传统XGBoost模型、SSA-XGBoost混合优化模型及萨道夫斯基经验公式,同时,敏感性分析得到总炸药用量是影响PPV预测结果的重要参数。进一步说明PSO-XGBoost预测模型可处理多因素的非线性特征,利用PSO-XGBoost预测模型能够更好地结合非线性、离散数据,建立一种可靠、简单有效的PPV预测模型。研究结果可为露天矿山爆破振动快速预测提供参考。 展开更多
关键词 露天矿山 混合优化算法 机器学习 爆破振动 回归分析
在线阅读 下载PDF
基于混合特征选择和INGO-DHKELM的变压器故障诊断方法 被引量:1
20
作者 李多 张莲 +3 位作者 赵娜 谢文龙 黄伟 季鸿宇 《南方电网技术》 CSCD 北大核心 2024年第8期19-28,共10页
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit le... 针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。 展开更多
关键词 变压器 故障诊断 特征选择 北方苍鹰优化算法 深度混合核极限学习机
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部