Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this pa...With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this paper, a navigational controller has been developed for a humanoid by using fuzzy logic as an intelligent algorithm for avoiding the obstacles present in the environment and reach the desired target position safely. Here, the controller has been designed by careful consideration of the navigational parameters by the help of fuzzy rules. The sensory information regarding obstacle distances and bearing angle towards the target are considered as inputs to the controller and necessary velocities for avoiding the obstacles are obtained as outputs. The working of the controller has been tested on a NAO humanoid robot in V-REP simulation platform. To validate the simulation results, an experimental platform has been designed under laboratory conditions, and experimental analysis has been performed.Finally, the results obtained from both the environments are compared against each other with a good agreement between them.展开更多
The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the ...The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the constraints of the foot motion parameters which include obstacle dimensions and the distance of obstacle from the humanoid robot is formulated. By varying the values of the constraint parameters, different types of foot motion for different obstacles can be produced. In this method, first the foot trajectory is generated, and then the waist trajectory is computed by using cubic spline interpolation without first calculating the zero moment point (ZMP) trajectory . The dynamic stability during the execution of stepping over and stepping on/off trajectories are ensured by incorporating the ZMP criterion. The effectiveness of the proposed method is confirmed by simulations and experiments on humanoid robot BHR-2.展开更多
To address the problem of resonance in the control of a robot arm,a resonance suppression strategy is proposed for a single-joint humanoid robot arm based on the proportionalresonant(PR)controller.First,an arm joint m...To address the problem of resonance in the control of a robot arm,a resonance suppression strategy is proposed for a single-joint humanoid robot arm based on the proportionalresonant(PR)controller.First,an arm joint model of the humanoid robot is established.Then the influence of resonance frequency on the performance of the control system with the robot arm is analyzed.The voltage fluctuation of the drive motor caused by the changes in arm motion is recognized as the disturbance of the current loop.The PR controller has the characteristic of disturbance rejection at a specific frequency.The output fluctuation of the driving system caused by the change of arm motion state at the resonance frequency is suppressed.Therefore the output current of the inverter will not be affected by the vibration of the arm at the resonance frequency.Finally,the control system is verified by MATLAB/Simulink simulation.The simulation results demonstrate that the control strategy for the humanoid robot arm based on the PR controller can suppress the resonance of the arm effectively,improving the dynamic performance and system stability.展开更多
随着机器人技术的发展,仿人机器人在多个领域展现出应用潜力和价值。针对仿人机器人,基于机器视觉进行自主抓取研究,旨在提高仿人机器人在自然环境中的抓取适应能力和动作仿人性。在机器视觉方面,硬件采用Realsense-D435深度摄像头,利用...随着机器人技术的发展,仿人机器人在多个领域展现出应用潜力和价值。针对仿人机器人,基于机器视觉进行自主抓取研究,旨在提高仿人机器人在自然环境中的抓取适应能力和动作仿人性。在机器视觉方面,硬件采用Realsense-D435深度摄像头,利用YOLO(You Only Look Once)物体检测模型实现目标物体的识别、空间定位、深度图裁切和目标点云生成,并根据目标点云与标准点云的配准算法(ICP)获取物体的姿态,通过D-H法对机器人头部进行建模,将物体的位置和姿态由相机坐标系转换为机器人坐标系。在运动规划上,参照人手臂的抓取规律,将抓取过程分为9个基础动作:初始位、移动至预抓取位、抓取物体、提起物体、搬运物体、移动至放置位、放置物体、退出位和回到初始位,针对不同物体确定对应抓取姿态,以提高抓取成功率,根据视觉获取的抓取点和放置点,自主计算余下的关键点,并以空间弧形作为抓取轨迹,通过Matlab仿真,验证抓取过程机械臂末端运动轨迹和关节轨迹的合理性。最后进行物体抓取实验,结果表明,仿人机器人在自然环境中能够快速准确地识别和定位不同物体,并能成功进行抓取和搬运,成功率均在80%以上,并且能够兼顾动作的仿人性,验证了所提出方案的有效性。本研究可促进仿人机器人在人类日常生活中的应用和普及。展开更多
针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描...针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描规律,以减少无用信息的获取;采用分步插补定位的方法来弥补分步扫描带来的时间消耗,从而提高了扫描系统的效率.为了满足扫描算法的在线处理对实时性的要求,采用了一种DSP(Digital Signal Processing)+FPGA(Field-Programmable Gate Array)的硬件平台架构:即DSP作主控制器负责三维信息的获取,FPGA作协处理器负责扫描算法的实现.实验结果表明仿人眼功能的扫描算法可以有效的提高三维扫描系统的扫描效率.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.
文摘With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this paper, a navigational controller has been developed for a humanoid by using fuzzy logic as an intelligent algorithm for avoiding the obstacles present in the environment and reach the desired target position safely. Here, the controller has been designed by careful consideration of the navigational parameters by the help of fuzzy rules. The sensory information regarding obstacle distances and bearing angle towards the target are considered as inputs to the controller and necessary velocities for avoiding the obstacles are obtained as outputs. The working of the controller has been tested on a NAO humanoid robot in V-REP simulation platform. To validate the simulation results, an experimental platform has been designed under laboratory conditions, and experimental analysis has been performed.Finally, the results obtained from both the environments are compared against each other with a good agreement between them.
基金Sponsored by the National"863"Program Project (1020021300704)
文摘The motion planning for obstacle negotiation by humanoid robot BHR-2 through stepping over or stepping on/off the wide and flat obstacle at known locations is presented. In the trajectory generation method, first the constraints of the foot motion parameters which include obstacle dimensions and the distance of obstacle from the humanoid robot is formulated. By varying the values of the constraint parameters, different types of foot motion for different obstacles can be produced. In this method, first the foot trajectory is generated, and then the waist trajectory is computed by using cubic spline interpolation without first calculating the zero moment point (ZMP) trajectory . The dynamic stability during the execution of stepping over and stepping on/off trajectories are ensured by incorporating the ZMP criterion. The effectiveness of the proposed method is confirmed by simulations and experiments on humanoid robot BHR-2.
基金Supported by the National Key Technology Research and Development Program of China(2018YFC1707104)National Natural Science Foundation of China(62076152)+1 种基金Natural Science Foundation of Shandong Province(ZR2017MF045)Beijing Advanced Innovation Center for Intelligent Robots and Systems。
文摘To address the problem of resonance in the control of a robot arm,a resonance suppression strategy is proposed for a single-joint humanoid robot arm based on the proportionalresonant(PR)controller.First,an arm joint model of the humanoid robot is established.Then the influence of resonance frequency on the performance of the control system with the robot arm is analyzed.The voltage fluctuation of the drive motor caused by the changes in arm motion is recognized as the disturbance of the current loop.The PR controller has the characteristic of disturbance rejection at a specific frequency.The output fluctuation of the driving system caused by the change of arm motion state at the resonance frequency is suppressed.Therefore the output current of the inverter will not be affected by the vibration of the arm at the resonance frequency.Finally,the control system is verified by MATLAB/Simulink simulation.The simulation results demonstrate that the control strategy for the humanoid robot arm based on the PR controller can suppress the resonance of the arm effectively,improving the dynamic performance and system stability.
文摘随着机器人技术的发展,仿人机器人在多个领域展现出应用潜力和价值。针对仿人机器人,基于机器视觉进行自主抓取研究,旨在提高仿人机器人在自然环境中的抓取适应能力和动作仿人性。在机器视觉方面,硬件采用Realsense-D435深度摄像头,利用YOLO(You Only Look Once)物体检测模型实现目标物体的识别、空间定位、深度图裁切和目标点云生成,并根据目标点云与标准点云的配准算法(ICP)获取物体的姿态,通过D-H法对机器人头部进行建模,将物体的位置和姿态由相机坐标系转换为机器人坐标系。在运动规划上,参照人手臂的抓取规律,将抓取过程分为9个基础动作:初始位、移动至预抓取位、抓取物体、提起物体、搬运物体、移动至放置位、放置物体、退出位和回到初始位,针对不同物体确定对应抓取姿态,以提高抓取成功率,根据视觉获取的抓取点和放置点,自主计算余下的关键点,并以空间弧形作为抓取轨迹,通过Matlab仿真,验证抓取过程机械臂末端运动轨迹和关节轨迹的合理性。最后进行物体抓取实验,结果表明,仿人机器人在自然环境中能够快速准确地识别和定位不同物体,并能成功进行抓取和搬运,成功率均在80%以上,并且能够兼顾动作的仿人性,验证了所提出方案的有效性。本研究可促进仿人机器人在人类日常生活中的应用和普及。
文摘针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描规律,以减少无用信息的获取;采用分步插补定位的方法来弥补分步扫描带来的时间消耗,从而提高了扫描系统的效率.为了满足扫描算法的在线处理对实时性的要求,采用了一种DSP(Digital Signal Processing)+FPGA(Field-Programmable Gate Array)的硬件平台架构:即DSP作主控制器负责三维信息的获取,FPGA作协处理器负责扫描算法的实现.实验结果表明仿人眼功能的扫描算法可以有效的提高三维扫描系统的扫描效率.