期刊文献+
共找到42,048篇文章
< 1 2 250 >
每页显示 20 50 100
Integration of a hybrid vibration prediction model for railways into noise mapping software:methodology,assumptions and demonstration
1
作者 Pieter Reumers Geert Degrande +5 位作者 Geert Lombaert David JThompson Evangelos Ntotsios Pascal Bouvet Brice Nélain Andreas Nuber 《Railway Engineering Science》 2025年第1期1-26,共26页
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping... Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium). 展开更多
关键词 Railway-induced vibration Hybrid vibration prediction model Experimental validation Low-speed approximation
在线阅读 下载PDF
Review of Vibration Analysis and Structural Optimization Research for Rotating Blades
2
作者 Saifeng Zhong Guoyong Jin +2 位作者 Yukun Chen Tiangui Ye Tuo Zhou 《哈尔滨工程大学学报(英文版)》 2025年第1期120-136,共17页
Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or hig... Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades. 展开更多
关键词 Rotating blade vibration characteristics Structural optimization Harsh operating conditions REVIEW
在线阅读 下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
3
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation Low-frequency ultrasound vibration Transmission loss
在线阅读 下载PDF
Vibration and noise mechanism of a 110 kV transformer under DC bias based on finite element method
4
作者 Ziyang Li Xujun Lang +3 位作者 Bo Yang Xiaolin Liu Hao Wang Zhang Li 《Global Energy Interconnection》 EI CSCD 2024年第4期503-512,共10页
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo... Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB. 展开更多
关键词 TRANSFORMER DC bias vibration Noise
在线阅读 下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
5
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
在线阅读 下载PDF
Theoretical and Experimental Research of High-Static-Low Dynamic Torsional Vibration Isolator for Ship Shafting
6
作者 LI Lin-tao LU Jia-zhong +2 位作者 YANG Zhi-rong XIAO Wang-qiang RAO Zhu-shi 《船舶力学》 EI CSCD 北大核心 2024年第12期1970-1982,共13页
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor... High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting. 展开更多
关键词 ship shafting high-static-low-dynamic stiffness torsional vibration isolator
在线阅读 下载PDF
Vibration properties of Paulownia wood for Ruan sound quality using machine learning methods
7
作者 Yang Yang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期216-222,共7页
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba... As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards. 展开更多
关键词 Sound quality Wood vibration performance Paulownia wood Machine learning methods
在线阅读 下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
8
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
在线阅读 下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
9
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 High-speed train GEARBOX Bench test vibration behavior Modal identification
在线阅读 下载PDF
Ab initio potential energy surface and anharmonic vibration spectrum of NF_(3)^(+)
10
作者 陈艳南 徐建刚 +3 位作者 范江鹏 马双雄 郭甜 张云光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期327-333,共7页
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction... Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. 展开更多
关键词 ab initio methods potential energy surfaces vibration frequencies coupled resonance infrared spectra
在线阅读 下载PDF
Random vibration analysis of FGM plates subjected to moving load using a refined stochastic finite element method
11
作者 Ngoc-Tu Do Trung Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期42-56,共15页
The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte C... The article introduces a finite element procedure using the bilinear quadrilateral element or four-node rectangular element(namely Q4 element) based on a refined first-order shear deformation theory(rFSDT) and Monte Carlo simulation(MCS), so-called refined stochastic finite element method to investigate the random vibration of functionally graded material(FGM) plates subjected to the moving load.The advantage of the proposed method is to use r-FSDT to improve the accuracy of classical FSDT, satisfy the stress-free condition at the plate boundaries, and combine with MCS to analyze the vibration of the FGM plate when the parameter inputs are random quantities following a normal distribution. The obtained results show that the distribution characteristics of the vibration response of the FGM plate depend on the standard deviation of the input parameters and the velocity of the moving load.Furthermore, the numerical results in this study are expected to contribute to improving the understanding of FGM plates subjected to moving loads with uncertain input parameters. 展开更多
关键词 FGM Moving load R-FSDT Q4 element Monte Carlo simulation Random vibration
在线阅读 下载PDF
Finite element approach for free vibration and transient response of bi-directional functionally graded sandwich porous skew-plates with variable thickness subjected to blast load
12
作者 Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期83-104,共22页
At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The who... At the first time,the finite element method was used to model and analyze the free vibration and transient response of non-uniform thickness bi-directional functionally graded sandwich porous(BFGSP)skew plates.The whole BFGSP skew-plates is placed on a variable visco-elastic foundation(VEF)in the hygro-thermal environment and subjected to the blast load.The BFGSP skew-plate thickness is permitted to vary non-linearly over both the length and width of the skew-plate,thereby faithfully representing the real behavior of the structure itself.The analysis is based on a four-node planar quadrilateral element with eight degrees of freedom per node,which is approximated using Lagrange Q_(4)shape function and C^(1)level non-conforming Hermite shape function based on refined higher-order shear deformation plate theory.The forced vibration parameters of the non-uniform thickness BFGSP skew-plate are fully determined using Hamilton's principle and the Newmark-βdirect integration technique.Accuracy of the calculation program is validated by comparing its numerical results with those from reputable sources.Furthermore,a thorough assessment is conducted to determine the impact of various parameters on the free and forced vibration responses of the non-uniform thickness BFGSP skew-plate.The findings of the paper may be used in the development of civil and military structures in situations that are prone to exceptional forces,such as explosions and impacts load. 展开更多
关键词 Finite element modeling Hygro-thermal environment Variable thickness Free and forced vibration Visco-elastic foundation Skew-plate
在线阅读 下载PDF
A Distributed Acoustic Sensing System for Vibration Detection and Classification in Railways
13
作者 ZHU Songlin WANG Zhongyi +1 位作者 XIE Yunpeng SUN Zhi 《ZTE Communications》 2024年第2期80-84,共5页
A distributed acoustic sensing(DAS)system is proposed and a data processing method for vibration is designed in this paper.The proposed DAS system is based on the Rayleigh scattering signal and utilizes phase-sensitiv... A distributed acoustic sensing(DAS)system is proposed and a data processing method for vibration is designed in this paper.The proposed DAS system is based on the Rayleigh scattering signal and utilizes phase-sensitive optical time-domain reflectometry(φ-OTDR)to demodulate the environmental vibration.It can collect the vibration information in railways and implement vibration classification based on the feature of sensed vibration signals.This system has been deployed in Guangzhou Shenzhen High-Speed Railway,and the experimental results validate its effectiveness. 展开更多
关键词 DAS Φ-OTDR vibration classification
在线阅读 下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium
14
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
在线阅读 下载PDF
Mechanisms of microbubble vibration in water-gas dispersion system enhancing microscopic oil displacement efficiency
15
作者 ZHANG Moxi CHEN Xinglong +1 位作者 LYU Weifeng HAN Haishui 《Petroleum Exploration and Development》 2024年第6期1574-1586,共13页
Two etching models,the spherical-rod standard pore channel and the pore structure,were used to conduct displacement experiments in the water-gas dispersion system to observe the morphological changes and movement char... Two etching models,the spherical-rod standard pore channel and the pore structure,were used to conduct displacement experiments in the water-gas dispersion system to observe the morphological changes and movement characteristics of microbubbles.Additionally,numerical simulation methods were employed for quantitative analysis of experimental phenomena and oil displacement mechanisms.In the experiment,it was observed that microbubble clusters can disrupt the pressure equilibrium state of fluids within the transverse pores,and enhancing the overall fluid flow;bubbles exhibit a unique expansion-contraction vibration phenomenon during the flow process,which is unobservable in water flooding and gas flooding processes.Bubble vibration can accelerate the adsorption and expansion of oil droplets,and promote the emulsification of crude oil,thereby improving microscopic oil displacement efficiency.Combining experimental data with numerical simulation analysis of bubble vibration effects,it was found that microbubble vibrations exhibit characteristics of a sine function,and the energy release process follows an exponential decay pattern;compared to the gas drive front interface,microbubbles exhibit a significant“rigidity”characteristic;the energy released by microbubble vibrations alters the stability of the seepage flow field,resulting in significant changes to the flow lines;during the oil displacement process,the vast number of microbubbles can fully exert their vibrational effects,facilitating the migration of residual oil and validating the mechanism of the water-gas dispersion system enhancing microscopic oil displacement efficiency. 展开更多
关键词 water-gas dispersion system micro-etching model microbubble vibration elastic energy oil displacement mechanism
在线阅读 下载PDF
基于ADAMS/Vibration的微型摆式内燃机的振动分析 被引量:14
16
作者 武利霞 郭志平 +3 位作者 张仕民 吴书伟 张学文 李晓波 《噪声与振动控制》 CSCD 北大核心 2008年第1期7-9,共3页
振动对微型摆式内燃机的正常运转具有很大的危害。将微型摆式内燃机的振动简化为二自由度对称质量—弹簧系统,通过机械系统动力学分析软件ADAMS建立内燃机振动的虚拟样机模型,首先利用ADAMS/Vibration求解系统各阶固有频率和模态主振型... 振动对微型摆式内燃机的正常运转具有很大的危害。将微型摆式内燃机的振动简化为二自由度对称质量—弹簧系统,通过机械系统动力学分析软件ADAMS建立内燃机振动的虚拟样机模型,首先利用ADAMS/Vibration求解系统各阶固有频率和模态主振型,并利用MATLAB软件计算出各工作阶段的压力随时间的变化,赋予模型激励力,利用ADAMS/Vibration对其进行强迫振动仿真分析,并绘制频率响应曲线,以验证其响应是否在所要求的范围之内。 展开更多
关键词 振动与波 微型摆式内燃机(MFSPE) ADAMS/vibration
在线阅读 下载PDF
基于ADAMS/Vibration的立式辊磨机粉磨装置的振动分析 被引量:6
17
作者 张玉宝 毛海东 《煤矿机械》 2017年第4期37-40,共4页
针对立式辊磨机在运行过程中存在的振动现象,联合ADAMS/View与ANSYS建立立式辊磨机的刚柔耦合模型,导入ADAMS/Vibration创建立式辊磨机的振动分析模型,对该模型进行模态分析和强迫振动分析,得到系统的各阶固有频率、模态主振型及频率响... 针对立式辊磨机在运行过程中存在的振动现象,联合ADAMS/View与ANSYS建立立式辊磨机的刚柔耦合模型,导入ADAMS/Vibration创建立式辊磨机的振动分析模型,对该模型进行模态分析和强迫振动分析,得到系统的各阶固有频率、模态主振型及频率响应曲线,为其结构优化改进提供了理论依据。 展开更多
关键词 立式辊磨机 ADAMS/vibration 刚柔耦合 振动分析
在线阅读 下载PDF
VIBRATION CHARACTERISTIC INVESTIGATION OF COUNTER-ROTATING DUAL-ROTOR IN AERO-ENGINE 被引量:5
18
作者 冯国全 周柏卓 罗贵火 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期33-39,共7页
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s... Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio. 展开更多
关键词 AERO-ENGINE COUNTER-ROTATING rotor dynamics DUAL-ROTOR vibration characteristics
在线阅读 下载PDF
LEAD SCREW LINEAR ULTRASONIC MOTOR USING BENDING VIBRATION MODES 被引量:5
19
作者 张健滔 黄卫清 +1 位作者 朱华 赵淳生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第2期89-94,共6页
The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Moti... The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained. 展开更多
关键词 motors ultrasonic motor vibrations finite element method (FEM) traveling wave
在线阅读 下载PDF
VIBRATION NUMERICAL ANALYSIS OF COUNTER-ROTATING TURBINE WITH WAKE-FLOW USING FLUID-STRUCTURE INTERACTION METHOD 被引量:3
20
作者 赵振华 吕文亮 +1 位作者 陈伟 吴铁鹰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期66-72,共7页
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ... The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different. 展开更多
关键词 counter-rotating turbine fluid and structure coupling vibration responses numerical analysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部