A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is cl...A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.展开更多
Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organizati...Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.展开更多
A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data an...A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.展开更多
Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are...Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are analyzed. The distribution law of human errors is acquired. The ratio of human errors and human reliability index are also calculated.展开更多
为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不...为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。展开更多
文摘A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.
文摘Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.
文摘Human errors of seven types of armored equipment, which occur during the course of field test, are statistically analyzed. The human error-to-armored equipment failure ratio is obtained. The causes of human errors are analyzed. The distribution law of human errors is acquired. The ratio of human errors and human reliability index are also calculated.
文摘为满足人机系统概率风险评估的需要,提出一种人为差错概率量化方法。分析技能、规则和知识为基础(skill,rule and knowledge-based,SRK)框架和行为模式的确定方法Hanaman决策树法,指出在确定行为模式的过程中考虑行为模式影响因素的不确定性是必要的;使用模糊逻辑方法处理行为模式各个影响因素的不确定性,根据Hanaman决策树构建模糊推理规则,利用系统人为行为可靠性程序(systematic human action reliability procedure,SHARP)方法所提供的人为差错概率区间确定人为差错概率的隶属度函数。结果表明:该方法考虑了任务场景的不确定性,可以得到人为差错概率的精确值,满足人机系统概率风险评估的需要。