期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测
1
作者
朱婷
颜七笙
《南京信息工程大学学报》
北大核心
2025年第4期478-493,共16页
针对电力负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,本文提出一种基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测模型.首先,采用随机森林(RF)算法对气象因素进行特征提取,在保证数据特征的同时,降低数据...
针对电力负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,本文提出一种基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测模型.首先,采用随机森林(RF)算法对气象因素进行特征提取,在保证数据特征的同时,降低数据的复杂度;其次,采用自适应噪声完备集合经验模态分解(CEEMDAN)算法对原始负荷数据进行分解,得到若干较为平稳的模态分量;然后,将经过特征提取的气象因素和模态分量作为输入数据,利用BiGRU(双向门控循环单元)-SelfAttention(自注意力机制)模型进行预测,并针对BiGRU-SelfAttention模型的超参数难以选取最优解的问题,引入蜜獾算法(HBA)对BiGRU-SelfAttention模型的超参数进行寻优;最后,将子序列预测结果叠加,得到最终预测结果.以某地实际电力负荷数据为数据集进行对比试验,结果表明,本文所提出的模型具有较高的预测精度,可以为电力系统稳定运行提供可靠依据.
展开更多
关键词
短期负荷预测
随机森林
自适应噪声完备集合经验模态分解
蜜獾算法
双向门控循环单元
自注意力机制
在线阅读
下载PDF
职称材料
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断
被引量:
6
2
作者
陈爱午
王红卫
《机电工程》
CAS
北大核心
2023年第8期1157-1166,共10页
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDA...
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDAN的白噪声幅值权重和噪声添加次数,并对行星齿轮箱的振动信号进行了HBA-ICEEMDAN分解,得到了若干个本征模态函数,筛选出其中相关系数较大的分量进行了重构;然后,利用HWPE提取了重构低噪信号的敏感特征值,获得了故障特征向量;最后,利用GWO优化了SVM的惩罚系数和核系数,训练GWO-SVM多故障分类器,对行星齿轮箱损伤进行了识别;利用行星齿轮箱的振动数据进行实验,验证了算法的有效性。研究结果表明:结合HBA-ICEEMDAN、HWPE和GWO-SVM的行星齿轮箱故障诊断方法能够准确地识别行星齿轮箱的典型单点故障和复合故障,识别准确率达到了98.15%。相较于其他组合方法,该方法在行星齿轮箱故障诊断中更具有有效性,更具有优越性。
展开更多
关键词
齿轮传动
蜜獾算法
改进自适应噪声完备经验模态分解
层次加权排列熵
灰狼算法-优化支持向量机
行星齿轮箱
故障诊断
在线阅读
下载PDF
职称材料
基于多策略的改进蜜獾算法及其应用
被引量:
2
3
作者
向海昀
李鸿鑫
+1 位作者
符晓
苏小平
《计算机工程》
CAS
CSCD
北大核心
2023年第12期78-87,共10页
蜜獾算法(HBA)是一种新型智能优化算法,通过模拟蜜獾觅食行为进行寻优,具有结构简单且收敛速度快等特点。针对HBA在解决高维复杂问题时收敛精度低、收敛速度慢以及全局寻优能力不足等问题,提出一种多策略改进的蜜獾算法(MSHBA)。设计一...
蜜獾算法(HBA)是一种新型智能优化算法,通过模拟蜜獾觅食行为进行寻优,具有结构简单且收敛速度快等特点。针对HBA在解决高维复杂问题时收敛精度低、收敛速度慢以及全局寻优能力不足等问题,提出一种多策略改进的蜜獾算法(MSHBA)。设计一种限制反向学习机制,随着算法迭代生成限制反向解更新种群,提高种群质量,加快算法收敛速度,引入自适应权重因子,随着迭代次数的变化调节不同寻优路径上的寻优步长,协调算法不同探索阶段,提升算法稳定性,加快收敛速度,构建一种新的饥饿搜索策略,根据种群能量以及全局最差位置改变寻优路径上的寻优步长,避免算法陷入早熟。基于9个标准测试函数对MSHBA、HBA、鲸鱼优化、哈里斯鹰、单一策略等算法在不同维度上进行仿真实验,结果表明,MSHBA具有更优的稳定性和收敛精度,将算法应用于机械设计优化问题并进行结果比较,MSHBA对比原HBA性能优化了88%,适用于求解高维复杂问题。
展开更多
关键词
蜜獾算法
限制反向学习机制
自适应权重因子
饥饿搜索策略
机械设计
在线阅读
下载PDF
职称材料
题名
基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测
1
作者
朱婷
颜七笙
机构
东华理工大学经济与管理学院
东华理工大学理学院
出处
《南京信息工程大学学报》
北大核心
2025年第4期478-493,共16页
基金
国家自然科学基金(71961001)
东华理工大学研究生创新基金(DHYC-202225)。
文摘
针对电力负荷数据存在非线性、时序性等多方面因素导致的预测精度不足等问题,本文提出一种基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测模型.首先,采用随机森林(RF)算法对气象因素进行特征提取,在保证数据特征的同时,降低数据的复杂度;其次,采用自适应噪声完备集合经验模态分解(CEEMDAN)算法对原始负荷数据进行分解,得到若干较为平稳的模态分量;然后,将经过特征提取的气象因素和模态分量作为输入数据,利用BiGRU(双向门控循环单元)-SelfAttention(自注意力机制)模型进行预测,并针对BiGRU-SelfAttention模型的超参数难以选取最优解的问题,引入蜜獾算法(HBA)对BiGRU-SelfAttention模型的超参数进行寻优;最后,将子序列预测结果叠加,得到最终预测结果.以某地实际电力负荷数据为数据集进行对比试验,结果表明,本文所提出的模型具有较高的预测精度,可以为电力系统稳定运行提供可靠依据.
关键词
短期负荷预测
随机森林
自适应噪声完备集合经验模态分解
蜜獾算法
双向门控循环单元
自注意力机制
Keywords
short-term load forecasting
random forest(RF)
complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)
honey
badger
algorithm
(
hba
)
bidirectional gated recurrent unit(BiGRU)
self-attention mechanism
分类号
TM715 [电气工程—电力系统及自动化]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断
被引量:
6
2
作者
陈爱午
王红卫
机构
江苏联合职业技术学院泰兴分院
东南大学机械工程学院
出处
《机电工程》
CAS
北大核心
2023年第8期1157-1166,共10页
基金
国家自然科学基金资助项目(52075095)。
文摘
针对行星齿轮箱的故障特征提取和模式识别问题,提出了结合蜜獾算法(HBA)优化改进自适应噪声完备经验模态分解(ICEEMDAN)、层次加权排列熵(HWPE)和灰狼算法(GWO)优化支持向量机(SVM)的行星齿轮箱故障诊断方法。首先,利用HBA优化了ICEEMDAN的白噪声幅值权重和噪声添加次数,并对行星齿轮箱的振动信号进行了HBA-ICEEMDAN分解,得到了若干个本征模态函数,筛选出其中相关系数较大的分量进行了重构;然后,利用HWPE提取了重构低噪信号的敏感特征值,获得了故障特征向量;最后,利用GWO优化了SVM的惩罚系数和核系数,训练GWO-SVM多故障分类器,对行星齿轮箱损伤进行了识别;利用行星齿轮箱的振动数据进行实验,验证了算法的有效性。研究结果表明:结合HBA-ICEEMDAN、HWPE和GWO-SVM的行星齿轮箱故障诊断方法能够准确地识别行星齿轮箱的典型单点故障和复合故障,识别准确率达到了98.15%。相较于其他组合方法,该方法在行星齿轮箱故障诊断中更具有有效性,更具有优越性。
关键词
齿轮传动
蜜獾算法
改进自适应噪声完备经验模态分解
层次加权排列熵
灰狼算法-优化支持向量机
行星齿轮箱
故障诊断
Keywords
gear transmission
honey
badger
algorithm
(
hba
)
improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)
hierarchical weighted permutation entropy(HWPE)
grey wolf
algorithm
-optimal support vector machine(GWO-SVM)
planetary gearbox
fault diagnosis
分类号
TH132.41 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
基于多策略的改进蜜獾算法及其应用
被引量:
2
3
作者
向海昀
李鸿鑫
符晓
苏小平
机构
西南石油大学计算机科学学院
西南石油大学网络与信息化中心
出处
《计算机工程》
CAS
CSCD
北大核心
2023年第12期78-87,共10页
基金
国家自然科学基金(61503312)。
文摘
蜜獾算法(HBA)是一种新型智能优化算法,通过模拟蜜獾觅食行为进行寻优,具有结构简单且收敛速度快等特点。针对HBA在解决高维复杂问题时收敛精度低、收敛速度慢以及全局寻优能力不足等问题,提出一种多策略改进的蜜獾算法(MSHBA)。设计一种限制反向学习机制,随着算法迭代生成限制反向解更新种群,提高种群质量,加快算法收敛速度,引入自适应权重因子,随着迭代次数的变化调节不同寻优路径上的寻优步长,协调算法不同探索阶段,提升算法稳定性,加快收敛速度,构建一种新的饥饿搜索策略,根据种群能量以及全局最差位置改变寻优路径上的寻优步长,避免算法陷入早熟。基于9个标准测试函数对MSHBA、HBA、鲸鱼优化、哈里斯鹰、单一策略等算法在不同维度上进行仿真实验,结果表明,MSHBA具有更优的稳定性和收敛精度,将算法应用于机械设计优化问题并进行结果比较,MSHBA对比原HBA性能优化了88%,适用于求解高维复杂问题。
关键词
蜜獾算法
限制反向学习机制
自适应权重因子
饥饿搜索策略
机械设计
Keywords
honey
badger
algorithm
(
hba
)
restricted reverse learning mechanism
adaptive weight factor
hungry search strategy
mechanical design
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CEEMDAN和HBA-BiGRU-SelfAttention的短期负荷预测
朱婷
颜七笙
《南京信息工程大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于HBA-ICEEMDAN和HWPE的行星齿轮箱故障诊断
陈爱午
王红卫
《机电工程》
CAS
北大核心
2023
6
在线阅读
下载PDF
职称材料
3
基于多策略的改进蜜獾算法及其应用
向海昀
李鸿鑫
符晓
苏小平
《计算机工程》
CAS
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部