Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-or...Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.展开更多
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of ...A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.展开更多
This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can imp...This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.展开更多
Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potent...Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocatio...Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.展开更多
为解决RFID领域中多标签识别存在的信息泄露和信息碰撞问题,提出了一种基于预约机制的防碰撞安全认证协议(reservation mechanism for authentication protocol,RMAP)。RMAP可有效抵御窃听、重放、欺骗等攻击,且采用精简杂凑运算次数的...为解决RFID领域中多标签识别存在的信息泄露和信息碰撞问题,提出了一种基于预约机制的防碰撞安全认证协议(reservation mechanism for authentication protocol,RMAP)。RMAP可有效抵御窃听、重放、欺骗等攻击,且采用精简杂凑运算次数的方法,有效地简化了计算量。同时,采用载波监听多点接入技术,通过重传随机数进行帧序号的二次预约和重排,实现标签的无碰撞有序通信和识别效率的最优,解决了现有协议为避免信息碰撞而对标签进行循环性识别导致的识别效率低、读取时间长的问题。对RMAP识别效率的数值分析表明,当待识别标签数量少于1024时,RMAP的最低识别效率为95.15%,高于常用防碰撞协议。展开更多
基金supported by National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘Massive machine type communication(m MTC) is one of the key application scenarios for the fifth generation mobile communication(5 G). Grant-free(GF) transmission can reduce the high signaling overhead in m MTC. Non-orthogonal multiple access(NMA) can support more users for m MTC than orthogonal frequency division multiple access(OFDMA). Applying GF transmission in NMA system becomes an active topic recently. The in-depth study on applying GF transmission in pattern division multiple access(PDMA), a competitive candidate scheme of NMA, is investigated in this paper. The definition, latency and allocation of resource and transmission mechanism for GF-PDMA are discussed in detail. The link-level and system-level evaluations are provided to verify the analysis. The analysis and simulation results demonstrate that the proposed GF-PDMA has lower latency than grant based PDMA(GB-PDMA), possesses strong scalability to confront collision and provides almost 2.15 times gain over GF-OFDMA in terms of supporting the number of active users in the system.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61102053)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF201405)+1 种基金the Open Fund of IPOC(BUPT)(Grant No.IPOC2015B004)the Program of State Key Laboratory of Information Security(Grant No.2016-MS-05)
文摘A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.
文摘This paper investigates a peak to average power ratio (PAPR) reduction method in multicarrier code division multiple access (MC-CDMA) system. Variable code sets (VCS), a spreading codes selection scheme, can improve the PAPR property of the MC-CDMA signals, but this technique requires an exhaustive search over the combinations of spreading code sets. It is observed that when the number of active users increases, the search complexity will increase exponentially. Based on this fact, we propose a low complexity VCS (LC-VCS) method to reduce the computational complexity. The basic idea of LC-VCS is to derive new signals using the relationship between candidature signals. Simulation results show that the proposed approach can reduce PAPR with lower comtational pucomplexity. In addition, it can be blindly received without any side information.
文摘Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘Distributed radio access network (DRAN) is a novel wireless access architecture and can solve the problem of the available spectrum scarcity in wireless communications. In this paper, we investigate resource allocation for the downlink of OFDMA DRAN. Unlike previous exclusive criterion based algorithms that allocate each subcarrier to only one user in the system, the proposed algorithms are based on shared criterion that allow each subcarrier to be allocated to multiple users through different antennas and to only one user through same antenna. First, an adaptive resource allocation algorithm based on shared criterion is proposed to maximize total system rate under each user's minimal rate and each antenna's maximal power constraints. Then we improve the above algorithm by considering the influence of the resource allocation scheme on single user. The simulation results show that the shared criterion based algorithm provide much higher total system rate than that of the exclusive criterion based algorithm at the expense of the outage performance and the fairness, while the improved algorithm based on shared criterion can achieve a good tradeoff performance.
文摘为解决RFID领域中多标签识别存在的信息泄露和信息碰撞问题,提出了一种基于预约机制的防碰撞安全认证协议(reservation mechanism for authentication protocol,RMAP)。RMAP可有效抵御窃听、重放、欺骗等攻击,且采用精简杂凑运算次数的方法,有效地简化了计算量。同时,采用载波监听多点接入技术,通过重传随机数进行帧序号的二次预约和重排,实现标签的无碰撞有序通信和识别效率的最优,解决了现有协议为避免信息碰撞而对标签进行循环性识别导致的识别效率低、读取时间长的问题。对RMAP识别效率的数值分析表明,当待识别标签数量少于1024时,RMAP的最低识别效率为95.15%,高于常用防碰撞协议。