In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evoluti...In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.展开更多
传统滚齿工装设计依赖经验积累和试错法,缺乏系统的分析手段,导致设计周期长、成本高。针对这一问题,本研究针对某盘类齿轮,利用有限元(finite element analysis, FEA)工具,开发出一套滚齿快换工装,从而提高滚齿工装的整体设计水平和力...传统滚齿工装设计依赖经验积累和试错法,缺乏系统的分析手段,导致设计周期长、成本高。针对这一问题,本研究针对某盘类齿轮,利用有限元(finite element analysis, FEA)工具,开发出一套滚齿快换工装,从而提高滚齿工装的整体设计水平和力学性能。首先基于圆柱渐开线斜齿轮滚齿加工原理完成工装结构设计,然后运用ANSYS Workbench软件进行仿真分析,分析结果表明工装的结构强度满足加工要求,但胀套上的等效应力值超出许用应力24%。为改善胀套的等效应力分布并提升其使用性能,采用基于遗传算法的多目标优化方法对其进行优化设计,优化后胀套在变形量与等效应力满足要求的前提下,其疲劳寿命由594.7次循环提升至6 666.3次循环。展开更多
基金Project(9140xx8020212xx)supported by the Advanced Research Foundation,ChinaProject(GZ2018KF003)supported by the State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System,China
文摘In order to improve the processing precision and shorten the hob manufacturing cycle of the face gear,a precision generating hobbing method for face gear with the assembly spherical hob is proposed.Firstly,the evolution of the cylindrical gear to spherical hob basic worm is analyzed,then the spherical hob basic worm is designed,thus the basic worm and spiral angle equation of spherical hob are obtained.Secondly,based on the design method of the existing hob,the development method of the assembly spherical hob is analyzed,the cutter tooth and the cutter substrate of the assembly hob are designed,and the whole assembly is finished.Thirdly,based on the need of face gear hobbing,a numerical control machine for gear hobbing is developed,and the equation of the face gear is obtained.Fourth,for reducing the face gear processing errors induced by equivalent installation errors,the error analysis model is established and the impacts of each error on the gear tooth surface are analyzed.Finally,the assembly spherical hob is manufactured and the gear hobbing test is completed.According to the measurement results,the processing parameters of face gear hobbing are modified,and the deviation of tooth surface is significantly reduced.