α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were ...α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.展开更多
Gum arabic, an inexpensive dispersant widely used in the food industry, has great potential for application in building materials. In order to find out the dispersion effect of gum arabic and the factors influencing t...Gum arabic, an inexpensive dispersant widely used in the food industry, has great potential for application in building materials. In order to find out the dispersion effect of gum arabic and the factors influencing the holding capacity of gum arabic in cement during hydration, rheological properties of cement paste with added gum arabic were assessed in this paper. The results show that 0.10wt%-0.60wt% of gum arabic positively affects dispersion, lower dosages have negligible effect. High speed mixing is required to maintain the dispersion stability of gum arabic in cement paste. The optimum dosage of gum arabic to achieve best disperse-holding capacity of cement paste was 0.3wt%, and the minimum water-cement ratio needed to obtain a dispersion effect was 0.28.展开更多
基金supported by the National Natural Science Foundation of China(52203016)the USTC Research Funds of the Double First-Class Initiative(YD9990002018)+3 种基金the Overseas Students Innovation and Entrepreneurship Support Program Project of Anhui Province(2021LCX022)the Key R&D Projects in Anhui Province(2022i01020012)the Natural Science Foundation of Hefei(2022039)the Excellent Research and Innovation Team Project of Anhui Province(2022AH010001).
文摘α-Diimide catalysts have attracted widespread attention due to their unique chain walking characteristics.A series ofα-diimide nickel/palladium catalysts with different electronic effects and steric hindrances were designed and synthesized for olefin polymerization.In this work,we synthesized a series of asymmetricα-diimide nickel complexes with different steric hindrances and used them for ethylene polymerization.These nickel catalysts have high ethylene polymerization activity,up to 6.51×10^(6)g·mol^(−1)·h^(−1),and the prepared polyethylene has a moderate melting point and high molecular weight(up to 38.2×10^(4)g·mol^(−1)),with a branching density distribution between 7 and 94 branches per 1000 carbons.More importantly,the polyethylene prepared by these catalysts exhibits excellent tensile properties,with strain and stress reaching 800%and 30 MPa,respectively.
文摘Gum arabic, an inexpensive dispersant widely used in the food industry, has great potential for application in building materials. In order to find out the dispersion effect of gum arabic and the factors influencing the holding capacity of gum arabic in cement during hydration, rheological properties of cement paste with added gum arabic were assessed in this paper. The results show that 0.10wt%-0.60wt% of gum arabic positively affects dispersion, lower dosages have negligible effect. High speed mixing is required to maintain the dispersion stability of gum arabic in cement paste. The optimum dosage of gum arabic to achieve best disperse-holding capacity of cement paste was 0.3wt%, and the minimum water-cement ratio needed to obtain a dispersion effect was 0.28.