The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c...The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.展开更多
Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, ...The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.展开更多
OBJECTIVE Dopamine receptors(DRs) are involved in the development and treatment of many neuropsychiatric disorders.Currently available dopaminergic drugs modulate both DRD2 and DRD3,leading to side effects and uncerta...OBJECTIVE Dopamine receptors(DRs) are involved in the development and treatment of many neuropsychiatric disorders.Currently available dopaminergic drugs modulate both DRD2 and DRD3,leading to side effects and uncertainty as to the roles each DR subtype plays physiologically.Our lab employed high throughput screening paradigms to discover highly selective modulators for the DRD3.METHODS The NIH Molecular Libraries Program 400,000 + small molecule library was screened using the Discove Rx Path Hunter?β-arrestin assay for compounds that activate the DRD3 without effects on the DRD2.Confirmation and counter-screens assessed selectivity and mechanisms of action.We identified 62 potential agonists,and chose the most promising to perform a structure-activity relationship(SAR) study to increase potency while maintaining selectivity.The lead compound identified through this process,ML417,was also characterized using bioluminescence resonance energy transfer(BRET)-based β-arrestin recruitment and G-protein activation assays as well as p-ERK assays.Potential neuroprotective properties of this compound were assessed using a SHSY5 Y neuronal cell model.RESULTS ML417 displays potent,DRD3-selective agonist activity in multiple functional assays.Binding and functional GPCR screens(>165 receptors) show ML417 has limited cross-reactivity with other GPCRs.ML417 also displays superior(compared to the reference compound pramipexole),dose-dependent protection against a decrease in neurite length induced by 10 μmol·L^(-1) of the neurotoxin,6-hydroxydopamine,in the SHSY5 Y cell model.CONCLUSION We have discovered and characterized ML417,a potent and highly selective DRD3 agonist.This compound will be useful as a research tool,and may prove useful as a therapeutic drug lead.展开更多
Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably aff...Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de...This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.展开更多
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s...Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.展开更多
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti...Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclongi...Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclonging to the disciplinc of food scicnce and technology.The aim of the journal is to report latcst rescarch results of high-tcch in food science.We welcome submissions that drive the ficld of food science towards whole food nutrition,intelligencc and high technology.展开更多
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type...Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
基金supported by Shanxi Province Science Foundation for Youths(202203021212300)Taiyuan University of Science and Technology Scientific Research Initial Funding(20212064)Outstanding Doctoral Award Fund in Shanxi Province(20222060).
文摘The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density.
文摘Because of an unfortunate mistake by authors,the Project(5227010679)of Foundation item was wrong.The corrected Project is shown as follows:Project(52271073).
基金Supported by the Innovative Team Funds of Northeast Agricultural University (CXT004-3-2)Foundation of Heilongjiang Educational Committee(11511030)
文摘The RR soybean was quantitatively detected by ABI Prism 7300 sequence detector with PCR primers and fluorescence probes were designed according to the sequences of endogenous Lectin gene and exogenous CP4-EPSPS gene, and the PCR systems were based on SYBR Green I and TaqMan. The standard curve of ACt between CP4-EPSPS gene and Lectin gene of the RR soybean in standard materials was generated and a linear regression equation was obtained. Quantification methods were optimized through two different real-time PCR chemistries, i.e. SYBR Green I and TaqMan, and the RR soybean contents were quantified in five standard samples and seven highly processed products by the two assays. Both methods are proved to be specific, highly sensitive and reliable for both identification and quantification of soybean DNA. The results indicate that the two optimized PCR system can be used for the practical quantitative detection of RR soybean in highly processed products.
基金supported by National Institute of Neurological Disorders and Stroke Intramural Research Program
文摘OBJECTIVE Dopamine receptors(DRs) are involved in the development and treatment of many neuropsychiatric disorders.Currently available dopaminergic drugs modulate both DRD2 and DRD3,leading to side effects and uncertainty as to the roles each DR subtype plays physiologically.Our lab employed high throughput screening paradigms to discover highly selective modulators for the DRD3.METHODS The NIH Molecular Libraries Program 400,000 + small molecule library was screened using the Discove Rx Path Hunter?β-arrestin assay for compounds that activate the DRD3 without effects on the DRD2.Confirmation and counter-screens assessed selectivity and mechanisms of action.We identified 62 potential agonists,and chose the most promising to perform a structure-activity relationship(SAR) study to increase potency while maintaining selectivity.The lead compound identified through this process,ML417,was also characterized using bioluminescence resonance energy transfer(BRET)-based β-arrestin recruitment and G-protein activation assays as well as p-ERK assays.Potential neuroprotective properties of this compound were assessed using a SHSY5 Y neuronal cell model.RESULTS ML417 displays potent,DRD3-selective agonist activity in multiple functional assays.Binding and functional GPCR screens(>165 receptors) show ML417 has limited cross-reactivity with other GPCRs.ML417 also displays superior(compared to the reference compound pramipexole),dose-dependent protection against a decrease in neurite length induced by 10 μmol·L^(-1) of the neurotoxin,6-hydroxydopamine,in the SHSY5 Y cell model.CONCLUSION We have discovered and characterized ML417,a potent and highly selective DRD3 agonist.This compound will be useful as a research tool,and may prove useful as a therapeutic drug lead.
基金Projects(52105175,52305149)supported by the National Natural Science Foundation of ChinaProject(2242024RCB0035)supported by the Zhishan Young Scholar Program of Southeast University,China+5 种基金Project(BK20210235)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2023MK042)supported by the State Administration for Market Regulation,ChinaProject(KJ2023003)supported by the Jiangsu Administration for Market Regulation,ChinaProjects(KJ(Y)202429,KJ(YJ)2023001)supported by the Jiangsu Province Special Equipment Safety Supervision Inspection Institute,ChinaProject(JSSCBS20210121)supported by the Jiangsu Provincial Innovative and Entrepreneurial Doctor Program,ChinaProject(1102002310)supported by the Technology Innovation Project for Returnees in Nanjing,China。
文摘Superhydrophobic glass has inspiring development prospects in endoscopes,solar panels and other engineering and medical fields.However,the surface topography required to achieve superhydrophobicity will inevitably affect the surface transparency and limit the application of glass materials.To resolve the contradiction between the surface transparency and the robust superhydrophobicity,an efficient and low-cost laser-chemical surface functionalization process was utilized to fabricate superhydrophobic glass surface.The results show that the air can be effectively trapped in surface micro/nanostructure induced by laser texturing,thus reducing the solid-liquid contact area and interfacial tension.The deposition of hydrophobic carbon-containing groups on the surface can be accelerated by chemical treatment,and the surface energy is significantly reduced.The glass surface exhibits marvelous robust superhydrophobicity with a contact angle of 155.8°and a roll-off angle of 7.2°under the combination of hierarchical micro/nanostructure and low surface energy.Moreover,the surface transparency of the prepared superhydrophobic glass was only 5.42%lower than that of the untreated surface.This superhydrophobic glass with high transparency still maintains excellent superhydrophobicity after durability and stability tests.The facile fabrication of superhydrophobic glass with high transparency and robustness provides a strong reference for further expanding the application value of glass materials.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by Poongsan-KAIST Future Research Center Projectthe fund support provided by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Grant No.2023R1A2C2005661)。
文摘This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance.
基金funded by the National Natural Science Foundation of China Youth Fund(Grant No.62304022)Science and Technology on Electromechanical Dynamic Control Laboratory(China,Grant No.6142601012304)the 2022e2024 China Association for Science and Technology Innovation Integration Association Youth Talent Support Project(Grant No.2022QNRC001).
文摘Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components.
文摘Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclonging to the disciplinc of food scicnce and technology.The aim of the journal is to report latcst rescarch results of high-tcch in food science.We welcome submissions that drive the ficld of food science towards whole food nutrition,intelligencc and high technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272208,22309057)the Natural Science Foundation of Hubei Province(Grant No.2023AFB355)the Fundamental Research Funds for the Central Universities of China(Grant No.2662022LXQD001).
文摘Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.