期刊文献+
共找到23,150篇文章
< 1 2 250 >
每页显示 20 50 100
Maximizing biomass utilization: An integrated strategy for coproducing multiple chemicals
1
作者 Byeongchan Ahn Sua Jo +3 位作者 Jonggeol Na J.Jay Liu Young-Ju Kim Wangyun Won 《Journal of Energy Chemistry》 2025年第1期180-191,共12页
Lignocellulosic biomass is one of the viable solutions to alleviate the global warming. However, the limited utilization of biomass majorly focused on cellulose and hemicellulose restricts the economic and environment... Lignocellulosic biomass is one of the viable solutions to alleviate the global warming. However, the limited utilization of biomass majorly focused on cellulose and hemicellulose restricts the economic and environmental feasibilities. To cope with this issue, we proposed an integrated process of co-producing 1,6-hexanediol(1,6-HDO) with tetrahydrofuran and adipic acid from biomass, referred to as Strategy A. To compare the impacts of lignin upgrading and feedstock, Strategy B, which co-produces tetrahydrofuran alone, and Strategy C, which is the traditional route to produce 1,6-HDO from fossil fuels, were used. Heat networks are also designed to reduce operating costs and indirect carbon emissions due to energy consumption, saving 87% and 83% of the heat and cooling requirements, respectively, in Strategy A. The market competitiveness of Strategy A was evaluated by determining the minimum selling price through techno-economic analysis, and sustainability was thoroughly investigated by quantifying the environmental impacts through both midpoint and endpoint life-cycle assessments(LCAs).Strategy A was found to be the most favorable both economically(USRDSCHARDOLLAR3,402/ton) and environmentally(-26.9 kg CO_(2)eq.). This indicates that lignin valorization is not only economically but also environmentally preferred. Finally, changes in economic and environmental feasibilities depending on economic, process, and environmental parameters were investigated using sensitivity and uncertainty analyses. The results of these analyses provide valuable insight into bio-based chemical production. 展开更多
关键词 BIOREFINERY Carbon mitigation Climate change Global warming Lignin utilization BIOECONOMY
在线阅读 下载PDF
Amorphous Iridium Oxide-Integrated Anode Electrodes with Ultrahigh Material Utilization for Hydrogen Production at Industrial Current Densities 被引量:2
2
作者 Lei Ding Kui Li +10 位作者 Weitian Wang Zhiqiang Xie Shule Yu Haoran Yu David ACullen Alex Keane Kathy Ayers Christopher BCapuano Fangyuan Liu Pu-Xian Gao Feng-Yuan Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期225-239,共15页
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s... Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution. 展开更多
关键词 Ionomer-free Amorphous IrOx electrodes Ultrahigh material utilization Scalable electrodeposition Hydrogen production
在线阅读 下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures 被引量:3
3
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries Zinc anodes High zinc utilization Depth of discharge Anode-free structures
在线阅读 下载PDF
Comprehensive reutilization of herbal waste:Coproduction of magnolol,honokiol,and β-amyrin from Magnolia officinalis residue 被引量:1
4
作者 Lukun Xiao Anyi Zhao +12 位作者 Jie Qiu An Liu Sha Chen Jinzhu Jiang Jun Zhang Cong Guo Jipeng Di Jintang Cheng Chang Chen Kangxin Hou Aiping Zhang Yan Liu Caixia Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期403-412,共10页
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off... Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB. 展开更多
关键词 Magnolia officinalis residues(MOR) Comprehensive utilization Metal-organic frame material BIOSYNTHESIS
在线阅读 下载PDF
A Special Issue:“Power Storage and Hydrogen Utilization Key Technologies”for Global Energy Interconnection
5
作者 Shengwei Mei Zhao Xu 《Global Energy Interconnection》 EI CSCD 2024年第5期I0002-I0003,共2页
High-quality development of renewable energy is the necessary path to sustainably meet the growing energy demand and achieve carbon neutrality.However,wind and photovoltaic power generation have high volatility,which ... High-quality development of renewable energy is the necessary path to sustainably meet the growing energy demand and achieve carbon neutrality.However,wind and photovoltaic power generation have high volatility,which brings challenges to the safety and stability of the power system and the requirement of power system flexibility.Power storage technology can effectively balance power supply and demand,and participate in system frequency and voltage regulation,improving the flexibility and reliability of the energy system.Hydrogen energy is a clean and efficient secondary energy source that can be directly applied in transportation,industry,and other fields.It can also be converted into stable chemical energy through electrolyzing water and being stored for a long period,which can help to improve the overall efficiency of the energy system.Therefore,the editorial department of Global Energy Interconnection has planned the special issue of“Power Storage and Hydrogen Utilization Key Technologies”. 展开更多
关键词 STORAGE POWER utilization
在线阅读 下载PDF
Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode
6
作者 Shuzhe Yang Qingqing Gao +7 位作者 Yukun Li Hongwei Cai Xiaodan Li Gaoxing Sun Shuxin Zhuang Yujin Tong Hao Luo Mi Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期24-31,I0002,共9页
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure... Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs. 展开更多
关键词 Spent lithium-ion batteries Recycled graphite anode FLUORIDE Self-activated effect Upgraded utilization
在线阅读 下载PDF
A review on plasma-based CO_(2) utilization:process considerations in the development of sustainable chemical production
7
作者 Sirui LI Giulia De FELICE +2 位作者 Simona EICHKORN Tao SHAO Fausto GALLUCCI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期1-16,共16页
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un... Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process. 展开更多
关键词 non-thermal plasma carbon capture and utilization process integration process intensification techno-economic analysis life cycle analysis
在线阅读 下载PDF
Plutonium utilization in a small modular molten-salt reactor based on a batch fuel reprocessing scheme
8
作者 Xue-Chao Zhao Rui Yan +4 位作者 Gui-Feng Zhu Ya-Fen Liu Jian Guo Xiang-Zhou Cai Yang Zou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期15-28,共14页
A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th... A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium. 展开更多
关键词 Molten salt fuel Plutonium utilization ^(233)U TRUs mole fraction Temperature feedback coefficient
在线阅读 下载PDF
Bamboo resources,utilization and ex-situ conservation in Xishuangbanna,South-eastern China 被引量:1
9
作者 杨清 段柱标 +3 位作者 王正良 何开红 孙启祥 彭镇华 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第1期79-83,共5页
This paper describes the geographical distribution, utilization, cultural value and ex-situ conservation of bamboo resources in Xishuangbanna, Yunan Province, China. Sixty species of bamboo in 19 genera are recorded i... This paper describes the geographical distribution, utilization, cultural value and ex-situ conservation of bamboo resources in Xishuangbanna, Yunan Province, China. Sixty species of bamboo in 19 genera are recorded in Xishuangbanna. The area of natural bamboo forest is 14319 ha, accounting for 5.92% of whole area of Xishuangbanna. The abundant resource of bamboo plays an important role in the economics and culture of national minorities in Xishuangbanna. Xishuangbanna Tropic Botanic Garden, Chinese Academy of Sciences (CAS), started to introduce bamboo species in 1961 and established the ex-situ conservation reserve (8 ha) of bamboo in 1981. Up to now, 211 species in 27 genera collected from tropic and sub-tropic of China and South-east Asia have been planted in the bamboo reserve, of which 11 species have bloomed and seeded, and their seeds were cultivated in Xishuangbanna Tropical Botanic Gardens, CAS, China. 展开更多
关键词 XISHUANGBANNA bamboo resources utilization ex-situ conservation
在线阅读 下载PDF
Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects 被引量:57
10
作者 Guofa Wang Yongxiang Xu Huaiwei Ren 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期161-169,共9页
Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technic... Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technical Revolution in Ecological and Efficient Coal Mining and Utilization & Intelligence and Diverse Coordination of Coal-based Energy System," initiated by Chinese Academy of Engineering, puts forward three stages(3.0, 4.0 and 5.0) of China's coal industry development strategy. Aimed at "reduced staff,ultra-low ecological damage, and emission level near to natural gas," breakthroughs should be achieved in the following three key technologies during the China Coal Industry 3.0 stage(2016–2025): including intelligent coal mining, ecological mining, ultra-low emission and environmental protection. This paper focuses on the development trends of the China Coal Industry 3.0 and its support for China Coal Industry 4.0 and 5.0 is analyzed and prospected as well, which may offer technical assistance and strategy orientation for realizing the transformation from traditional coal energy to clean energy. 展开更多
关键词 INTELLIGENT MINING ECOLOGICAL MINING CLEAN utilization Environmental protection China’s coal industry
在线阅读 下载PDF
Healthy function and high valued utilization of edible fungi 被引量:33
11
作者 Yanrong Zhang Dawei Wang +5 位作者 Yuetong Chen Tingting Liu Shanshan Zhang Hongxiu Fan Hongcheng Liu Yu Li 《Food Science and Human Wellness》 SCIE 2021年第4期408-420,共13页
Edible fungi are large fungi with high added value that can be utilized as resources.They are rich in high-quality protein,carbohydrate,various vitamins,mineral elements and other nutrients,and are characterized by hi... Edible fungi are large fungi with high added value that can be utilized as resources.They are rich in high-quality protein,carbohydrate,various vitamins,mineral elements and other nutrients,and are characterized by high protein,low sugar,low fat and low cholesterol.In addition,edible fungi contain a variety of bioactive substances,such as polysaccharides,dietary fiber,steroids,polyphenols,and most of these compounds have antioxidant,anti-tumor and other physiological functions.This review comprehensively discusses the bioactive components and functional characteristics of edible fungi(such as antioxidant,anti-aging,hypolipidemic activities,etc.).Then the recent developments and prospect in the high-valued utilization of edible fungi are discussed and summarized.The objective of this review is to improve the understanding of health-promoting properties of edible fungi,and provide reference for the industrial production of edible fungi-based health products. 展开更多
关键词 Edible fungi Functional components Processing and utilization High valued utilization
在线阅读 下载PDF
Analysis of CO_2 utilization into synthesis gas based on solar thermochemical CH_4-reforming 被引量:5
12
作者 Bachirou Guene Lougou Yong Shuai +3 位作者 Gédéon Chaffa Huang Xing Heping Tan Huibin Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期61-72,共12页
In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) techn... In this study, the solar thermochemical reactor performance for CO_2 utilization into synthesis gas(H_2+ CO) based on CH_4 reforming process was investigated in the context of carbon capture and utilization(CCU) technologies. The P1 radiation heat transfer model is adopted to establish the heat and mass transfer model coupled with thermochemical reaction kinetics. The reactor thermal behavior with direct heat transfer between gaseous reactant and products evolution and the effects of different structural parameters were evaluated. It was found that the reactor has the potential to utilize by ~60% of CO_2 captured with 40% of CH_4 co-fed into syngas(72.9% of H_2 and 27.1% of CO) at 741.31 k W/mof incident radiation heat flux. However, the solar irradiance heat flux and temperature distribution were found to significantly affect the reactant species conversion efficiency and syngas production. The chemical reaction is mainly driven by the thermal energy and higher species conversion into syngas was observed when the temperature distribution at the inner cavity of the reactor was more uniform. Designed a solar thermochemical reactor able to volumetric store concentrated irradiance could highly improve CCU technologies for producing energy-rich chemicals. Besides, the mixture gas inlet velocity, operating pressure and CO_2/CH_4 feeding ratio were crucial to determining the efficiency of CO_2 utilization to solar fuels. Catalytic CO_2-reforming of CH_4 to chemical energy is a promising strategy for an efficient utilization of CO_2 as a renewable carbon source. 展开更多
关键词 THERMOCHEMICAL reactor CO2 utilization Radiation FLUX and temperature distribution CH4-reforming SYNGAS
在线阅读 下载PDF
An Extraction Process for Optimal Utilization of Naphtha Based on Molecule Management 被引量:3
13
作者 Wang Tianxiao Shen Benxian Sun Hui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第3期91-101,共11页
In this paper, the separation of aromatics from light naphtha by using extraction process was investigated for improving the utilization efficiency of naphtha. It is indicated that, using a mixture of propylene carbon... In this paper, the separation of aromatics from light naphtha by using extraction process was investigated for improving the utilization efficiency of naphtha. It is indicated that, using a mixture of propylene carbonate-diethylene glycol as the solvent, the optimal extraction conditions cover: a volume fraction of propylene carbonate in the mixed solvent of 0.3, a solvent to feed ratio of 8, and an extraction temperature of 308 K. Through the extraction process, the aromatics mass fraction increases from 10.05% in naphtha to 27.74% in extract oil. It is found that the aromatics yield of extract oil, R_A, reaches 92.11%. As a result, in comparison with naphtha, the potential aromatics content of extract oil increases impressively by 18.03%. Meanwhile, the aromatics content of raffinate oil decreases to 1.33%, and the normal paraffin yield of raffinate oil, Rp, is 76.61%. Accordingly, higher total olefins yields can be obtained when using raffinate oil as the raw material for steam cracking. The present results show that the utilization efficiency of naphtha is improved through extraction process. 展开更多
关键词 optimal utilization NAPHTHA EXTRACTION AROMATICS SEPARATION
在线阅读 下载PDF
Prospects of utilization of waste dumped low-grade limestone for iron making: A case study 被引量:19
14
作者 Shobhana Dey Laxmikanta Sahu +1 位作者 Binish Chaurasia Bibhuranjan Nayak 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期367-372,共6页
Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the... Low grade dumped limestone sample having high silica of 8.1%, 36.8% CaO, and 3% Al2O3 has been studied with the aim to reduce the silica level to below 3% for its utilization in iron making. Beneficiation study of the sample was initiated with desliming of the feed sample of -100 μm to remove the siliceous ultrafine particles and to improve the feed quality. Flotation study was carried out by column flotation technique varying the collector dosage, superficial air flow velocity and froth depth to assess their effect on silica reduction and CaO recovery. It was observed that increased collector dosage and superficial air velocity increases the recovery of CaO, and increase in the froth depth reduces the mass flow and silica content in the concentrate. The best result was found at 1.25 cm/sec superficial air velocity, 25 cm froth depth, 1.25 kgpt collector dosage and concentrate assayed 47.3% CaO, 2.8% silica with 72% CaO recovery. 展开更多
关键词 Dumped limestone sample Column flotation Waste utilization Textual occurrence Mineral phases
在线阅读 下载PDF
Recent developments in activities, utilization and sources of cellulase 被引量:2
15
作者 FENG Yue JIANG Jian-xin ZHU Li-wei 《Forestry Studies in China》 CAS 2009年第3期202-207,共6页
One of the latest sources of alternative energy, bioethanol, has been the focus of modem research, The production of bioethanol is commonly restricted by the activity of cellulase. Therefore, cellulase has become one ... One of the latest sources of alternative energy, bioethanol, has been the focus of modem research, The production of bioethanol is commonly restricted by the activity of cellulase. Therefore, cellulase has become one of the critical issues in the conversion of lignocelluloses to bioethanol. This article is an overview of the sources and factors affecting enzyme activity, as well as methods of evaluation and utilizations of cellulase. We conclude that a combination of cellulases from various strains can enhance hydrolysis of substrates. Large enough amounts of cellobiase or sufficient cellobiase activity can reduce the inhibition to exoglucanase activity of cellobiose. Characterization and exploitation of cellulase should focus on a definite substrate. Promotion and mixed incubation of strains can reduce the cost of industrial utilization of cellulase. 展开更多
关键词 CELLULASE STRAINS INHIBITOR activity evaluation cellulase utilization
在线阅读 下载PDF
Group separation of coal components and new ideas of coal utilization as petroleum 被引量:19
16
作者 QIN Zhi-hong HOU Cui-li CHEN Juan ZHANG Li-ying MA Jie-qiong 《Mining Science and Technology》 EI CAS 2009年第5期636-641,共6页
Four different groups of components were separated from coal under mild conditions of extraction and stripping process. Within these groups, and with pre-separation, individual utilization of all coal components can b... Four different groups of components were separated from coal under mild conditions of extraction and stripping process. Within these groups, and with pre-separation, individual utilization of all coal components can be realized, similar to petroleum components and enhance the inherent value and utilization value of coal, as well as increase environmental benefits. The characteristics of each component were analyzed with measurements by FTIR, GC/MS, TEM and the establishment of caking properties. The results show that coal can be separated into residues, ultra-pure coal, asphaltene components and light components by adding solvents for stripping into the CS2/NMP mixed extraction solution. Those four groups of components present great differences in the presence of carbon and hydrogen elements, in the structure of functional groups, in their macroscopic structure and micro-morphology and caking properties. Every component possesses its own inherent values and approaches. A new idea of coal processes and utilization, similar to the use of petroleum is proposed. 展开更多
关键词 COAL group components SEPARATION similarity to petroleum process and utilization
在线阅读 下载PDF
The strategy for conservation and sustainable utilization of biodiversity in Changbaishan Biosphere Reserve 被引量:1
17
作者 杨修 吴刚 《Journal of Forestry Research》 SCIE CAS CSCD 1998年第3期217-222,共6页
This paper is focused on ecological assessment of the status of bio-diversity, and a strategic plan for biodiversity conservation on a sustainable basis. It described the present situation, the causes of bio-diversity... This paper is focused on ecological assessment of the status of bio-diversity, and a strategic plan for biodiversity conservation on a sustainable basis. It described the present situation, the causes of bio-diversity degradation, and the approaches for conserving, utilizing and developing bio-diversity in Changbaishan Biosphere Reserve. 展开更多
关键词 STRATEGY CONSERVATION Sustainable utilization CHANGBAISHAN BIOSPHERE RESERVE
在线阅读 下载PDF
Chemical constituents,biological functions and pharmacological effects for comprehensive utilization of Eucommia ulmoides Oliver 被引量:25
18
作者 Yi-Fan Xing Dong He +6 位作者 Yi Wang Wen Zeng Chong Zhang Yuan Lu Nan Su Yan-Hua Kong Xin-Hui Xing 《Food Science and Human Wellness》 SCIE 2019年第2期177-188,共12页
Eucommia ulmoides Oliver is a native plant and valuable tonic Chinese medicine in China with a long history,great economic value and comprehensive development potential.Traditionally,the comprehensive utilization rate... Eucommia ulmoides Oliver is a native plant and valuable tonic Chinese medicine in China with a long history,great economic value and comprehensive development potential.Traditionally,the comprehensive utilization rate of E.ulmoides Oliv.is still very low,only bark has been used as medicine and other parts of Eucommia ulmoides Oliv.cannot be fully utilized,even the leaves have been well utilized in food products in Japan in the past decades.In order to improve the comprehensive utilization efficiency of E.ulmoides Oliv.,in this review,we summarized the varieties and contents of main active compounds,biological functions and pharmacological effects in different parts of E.ulmoides Oliv.The findings suggest that other parts of E.ulmoides Oliv.could replace the bark of E.ulmoides Oliv.to some extent besides of their respective applications.The unique and extensive physiological functions between different parts of E.ulmoides Oliv.indicate that the comprehensive utilization of E.ulmoides Oliv.has a wide space to develop,which is also an effective way to protect E.ulmoides Oliv.resources and improve its the utilization rate. 展开更多
关键词 Eucommia ulmoides Oliver Comprehensive utilization Chemical constituents Biological functions Pharmacological effects
在线阅读 下载PDF
Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards 被引量:17
19
作者 HE Manchao CAO Xiuling +4 位作者 XIE Qiao YANG Jiahua QI Ping YANG Qing CHEN Xueqian 《Mining Science and Technology》 EI CAS 2010年第1期20-27,共8页
As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep co... As is well known, deep mines are hot. As mining depth increases, the temperature of the surrounding rock also increases. This seriously affects mine safety and production and has restricted the exploitation of deep coal resources. Therefore, reducing the working face temperature to improve working conditions by controlling these heat hazards is an urgent problem. Considering problems in cooling deep mines both domestically and abroad along with the actual conditions of the Zhangshuanglou coal mine, we propose a HEMS technology that uses heat resources from deep mines in a stepwise manner. HEMS means a high temperature ex-change machinery system. Mine inrush-water is used as a source of cooling. Twice the energy is extracted from the mine inrush water. Heat is used for building heating in the winter and cold water is used for cooling buildings in the summer. This opens a new technology for stepwise utilization of heat energy in deep mines. Energy conservation and reduced pollution, an improved environment and sustainable economic development are realized by this technique. The economic and social effects are obvious and illustrate a good prospect for the application and extension of the method. 展开更多
关键词 cooling system heat resources in deep mine heat hazard control mine water inrush stepwise utilization
在线阅读 下载PDF
Increasing sulfur utilization in lithium-sulfur batteries by a Co-MOF-74@MWCNT interlayer 被引量:4
20
作者 SiHyeon Sung Byung Hyuk Kim +2 位作者 SeungTaek Lee Sanghyeon Choi Woo Young Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期186-193,共8页
To improve lithium-sulfur battery performance,Co-MOF-74 has been applied for the first time as an interlayer with multiwalled carbon nanotubes(MWCNTs).Co-MOF-74@MWCNT was synthesized using a solvothermal method.The fa... To improve lithium-sulfur battery performance,Co-MOF-74 has been applied for the first time as an interlayer with multiwalled carbon nanotubes(MWCNTs).Co-MOF-74@MWCNT was synthesized using a solvothermal method.The fabrication of Co-MOF-74@MWCNT was confirmed by scanning electron microscopy,X-ray diffraction,thermogravimetric analysis,and Brunauer-Emmett-Teller testing.The interlayer was fabricated using a filtration method.Assembled batteries were prepared using a CoMOF-74@MWCNT interlayer and an MWCNT interlayer and subsequently investigated via cyclic voltammetry tests.Co-MOF-74 promotes a redox reaction and shows a small peak at 1.85 V.A symmetric and full cell test revealed that the Co-MOF-74@MWCNT cell enables a faster redox reaction and higher capacity than that of the MWCNT cell.After 15 cycles,the Co-MOF-74@MWCNT cell achieved a value of 1112 mAh g^(-1),which is 26% greater than that of the MWCNT cell(880 mAh g^(-1)) at 0.2 C.Voltage profile testing showed that the reason for the higher capacity of the Co-MOF-74@MWCNT cell is that it promotes the conversion of Li_(2)S_(2) to Li_(2)S.Various electrochemical analyses confirmed that the Co-MOF-74@MWCNT interlayer acts not only as a physical and chemical barrier but also promotes the transformation of Li_(2)S_(2) to Li_(2)S. 展开更多
关键词 Li-S battery Shuttling effect INTERLAYER Sulfur utilization Co-MOF-74
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部