期刊文献+
共找到736篇文章
< 1 2 37 >
每页显示 20 50 100
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
1
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
在线阅读 下载PDF
基于结合型制图方法的土壤类型推理研究 被引量:2
2
作者 李坤 黄魏 +2 位作者 傅佩红 陈宇昊 王子影 《土壤学报》 北大核心 2025年第2期348-361,共14页
通过数字土壤制图获取更高精度的土壤类型空间分布,对于人们合理利用土地资源具有重要意义。本研究基于实地采样点根据母质类型筛选环境因子,并使用随机森林,土壤景观推理模型方法(Soil-land Inference Model,So LIM)、K邻近算法(K-Near... 通过数字土壤制图获取更高精度的土壤类型空间分布,对于人们合理利用土地资源具有重要意义。本研究基于实地采样点根据母质类型筛选环境因子,并使用随机森林,土壤景观推理模型方法(Soil-land Inference Model,So LIM)、K邻近算法(K-Nearest Neighbor,KNN)等三种不同制图方法分别分区建模,得到制图结果后合并形成全域土壤类型空间分布图,继而,使用FP-Growth算法挖掘环境因子内部关联关系(频繁项集),分别将其与上述三种制图结果结合,再次推理土壤类型空间分布。制图结果显示:(1)按母质类型分开制图的效果和精度均较母质一起制图时好,且土壤类型空间分布的推理也更加合理。(2)随机森林与频繁项集结合制图在本研究中精度最高,为70.73%,且与另外两种结合方法推理的土壤类型空间分布也有一定的相似性,通过对比分析能够确定研究区土种类型的空间分布。(3)与频繁项集结合后,三种方法的制图精度和Kappa系数均有提升,提升最多的为KNN方法(分别提升9.76%,11.70%),最少的为随机森林方法(分别提升4.88%,5.85%),验证了本文设计结合方法的有效性。本研究主要进行了两方面探究,一方面探究了母质对环境因子筛选的影响,为数字土壤制图的因子筛选提供参考;另一方面通过将频繁项集与不同制图方法相结合为数字土壤制图提供了新的方法和思路,同时也为关联关系的信息化应用提供了参考。 展开更多
关键词 环境因子 母质 机器学习 频繁项集 数字土壤制图
在线阅读 下载PDF
象群优化的高效用项集挖掘算法
3
作者 何菲菲 韩萌 +2 位作者 张瑞华 李春鹏 孟凡兴 《南京师大学报(自然科学版)》 北大核心 2025年第2期124-138,共15页
启发式高效用项集挖掘是近年数据挖掘领域的一个热点研究课题.为了解决启发式高效用项集挖掘算法过早收敛导致的项集丢失问题,设计了一种新的启发式高效用项集挖掘算法,旨在较少的迭代次数内获取更多的高效用项集.其中,提出的基于母象... 启发式高效用项集挖掘是近年数据挖掘领域的一个热点研究课题.为了解决启发式高效用项集挖掘算法过早收敛导致的项集丢失问题,设计了一种新的启发式高效用项集挖掘算法,旨在较少的迭代次数内获取更多的高效用项集.其中,提出的基于母象因子的位差进化策略,有效缩减了搜索空间,提高了算法的执行效率.为了防止算法收敛过快陷入局部最优,提出两阶段种群多样性维护策略,保持了种群多样性和收敛性间的平衡.在真实数据集上进行的大量实验表明,提出的算法在高效用项集数量、时空效率和算法收敛性方面均优于现有的先进算法. 展开更多
关键词 高效用项集挖掘 启发式算法 象群优化 进化策略 多样性维护策略
在线阅读 下载PDF
基于频繁项集和高效用项集挖掘的银行间市场对倒交易检测
4
作者 刘丹 金天成 +3 位作者 窦亮 肖春芸 詹杭龙 卢艳民 《计算机应用与软件》 北大核心 2024年第12期376-383,共8页
传统的银行间市场对倒交易检测采用直接建立规则的方法,忽略了对倒交易的策划性、协同性和交易主体的差异性,存在运行时间长、效率低和滞后性等问题。基于频繁项集和高效用项集挖掘找到多次共同交易的群体,结合对倒交易模式检测出对倒... 传统的银行间市场对倒交易检测采用直接建立规则的方法,忽略了对倒交易的策划性、协同性和交易主体的差异性,存在运行时间长、效率低和滞后性等问题。基于频繁项集和高效用项集挖掘找到多次共同交易的群体,结合对倒交易模式检测出对倒交易链。实验结果表明,该方法识别率高于97%,且检测时间减少了45%,在效率上有明显的提高,对检测对倒交易有一定的预判指导意义。 展开更多
关键词 对倒交易 数据挖掘 高效用项集 频繁项集 市场操纵
在线阅读 下载PDF
基于滑动窗口含负项的高效用模式挖掘
5
作者 武妍 荀亚玲 马煜 《计算机工程与设计》 北大核心 2024年第3期845-851,共7页
针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有... 针对传统高效用模式挖掘均未考虑项的效用值为负,以及对流数据处理的时效性问题,提出一种基于滑动窗口的高效用挖掘算法HUPN_SW。利用一种新定义的滑动窗口正负效用列表PNSWU-List,维护挖掘最近批次高效用模式集所需的所有信息,实现有效的逐批次挖掘,避免重复的数据库扫描,在不产生候选效用模式集的情况下,直接挖掘出高效用模式,使HUPN_SW有效适应于动态流数据。实验结果表明,HUPN_SW算法在运行时间和可扩展性方面有良好表现。 展开更多
关键词 频繁模式挖掘 滑动窗口 高效用模式挖掘 高效用项集 负效用 流数据 效用列表
在线阅读 下载PDF
HHUIM:一种新的启发式高效用项集挖掘方法 被引量:1
6
作者 高智慧 韩萌 +2 位作者 李昂 刘淑娟 穆栋梁 《计算机应用研究》 CSCD 北大核心 2024年第1期94-101,共8页
针对基于启发式的高效用项集挖掘算法在挖掘过程中可能丢失大量项集的问题,提出一种新的启发式高效用项集挖掘算法HHUIM。HHUIM利用哈里斯鹰优化算法进行种群更新,能够有效减少项集丢失。提出并设计了鹰的替换策略,解决了搜索空间较大... 针对基于启发式的高效用项集挖掘算法在挖掘过程中可能丢失大量项集的问题,提出一种新的启发式高效用项集挖掘算法HHUIM。HHUIM利用哈里斯鹰优化算法进行种群更新,能够有效减少项集丢失。提出并设计了鹰的替换策略,解决了搜索空间较大的问题,降低了适应度函数值低于最小效用阈值的鹰的数量。此外,提出存储回溯策略,可有效防止算法因收敛过快陷入局部最优。大量的实验表明,所提算法优于目前最先进的启发式高效用项集挖掘算法。 展开更多
关键词 哈里斯鹰优化算法 高效用项集挖掘 启发式算法 智能优化算法
在线阅读 下载PDF
数据流上的约束跨层级高效用项集挖掘
7
作者 刘淑娟 韩萌 +2 位作者 高智慧 穆栋梁 李昂 《计算机工程与应用》 CSCD 北大核心 2024年第13期287-300,共14页
传统的高效用项集挖掘算法无法发现不同抽象层级类别之间的关系。因此,有研究者提出了跨层级的高效用项集挖掘算法。针对当前跨层级的高效用项集挖掘算法仅能处理静态数据并且无法控制挖掘层级范围的问题,提出了一种动态类别列表结构DTU... 传统的高效用项集挖掘算法无法发现不同抽象层级类别之间的关系。因此,有研究者提出了跨层级的高效用项集挖掘算法。针对当前跨层级的高效用项集挖掘算法仅能处理静态数据并且无法控制挖掘层级范围的问题,提出了一种动态类别列表结构DTUL存储并维护窗口内的项集效用和类别信息。基于此结构,首次提出了基于滑动窗口的约束跨层级高效用项集挖掘算法,包括自下而上挖掘的CCLHM_DTU算法和自上而下挖掘的CCLHM_UTD算法。在含有类别信息的数据集上进行了大量实验,实验结果表明提出的算法能够有效处理数据流并灵活约束项集的层级范围。 展开更多
关键词 高效用项集挖掘 跨层级高效用项集 数据流 滑动窗口 效用列表
在线阅读 下载PDF
基于统计显著性检验的高效用项集挖掘算法 被引量:3
8
作者 吴军 魏丹丹 +1 位作者 欧阳艾嘉 王亚 《计算机应用研究》 CSCD 北大核心 2024年第10期2970-2977,共8页
针对传统高效用项集挖掘算法在具有不同类型标签事务中报告假阳性高效用项集的问题,提出两个基于统计显著性检验的高效用项集挖掘算法——FHUI和PHUI算法。这两个算法首先找到所有待检验高效用项集并依据项集长度进行分组;然后,FHUI算... 针对传统高效用项集挖掘算法在具有不同类型标签事务中报告假阳性高效用项集的问题,提出两个基于统计显著性检验的高效用项集挖掘算法——FHUI和PHUI算法。这两个算法首先找到所有待检验高效用项集并依据项集长度进行分组;然后,FHUI算法根据项集自身的频率分布生成零分布,PHUI算法根据事务内置换策略或事务间置换策略构造置换事务集合来生成零分布。最后,FHUI和PHUI算法从零分布中计算出p值并运用错误发现率剔除假阳性高效用项集。基准事务集合实验结果显示FHUI和PHUI算法能够剔除大量的假阳性高效用项集,在后续分类任务中取得了更高的正确率;仿真事务集合实验结果显示FHUI和PHUI算法报告的项集中假阳性高效用项集数量占比低于4.8%且平均效用高于39000。实验结果证明,在具有不同类型的标签事务中,FHUI和PHUI算法报告的统计显著高效用项集可靠性和实用性更强。 展开更多
关键词 数据挖掘 高效用项集挖掘 统计显著性检验 Fisher检验 置换检验
在线阅读 下载PDF
高效的一次性弱间隙序列模式挖掘算法
9
作者 杨鸿茜 武优西 +2 位作者 耿萌 刘靖宇 李艳 《计算机工程》 CAS CSCD 北大核心 2024年第3期60-67,共8页
间隙约束序列模式挖掘作为序列模式挖掘的一个重要分支,可以发现模式在序列中的重复出现。然而,当前研究主要针对单项序列进行挖掘,并且序列中每一项都被认为具有相同意义。为解决该问题,提出一次性弱间隙序列模式挖掘(OWP)算法,该算法... 间隙约束序列模式挖掘作为序列模式挖掘的一个重要分支,可以发现模式在序列中的重复出现。然而,当前研究主要针对单项序列进行挖掘,并且序列中每一项都被认为具有相同意义。为解决该问题,提出一次性弱间隙序列模式挖掘(OWP)算法,该算法由准备阶段、支持度计算和候选模式生成3个步骤组成。在准备阶段,建立倒排索引,并对不频繁的项进行剪枝;在支持度计算方面,利用倒排索引结构记录出现位置,避免对原始数据集的重复扫描;在候选模式生成方面,采用模式连接策略,减少冗余候选模式的生成。在项集序列和单项序列共6个真实数据集上的实验结果表明,OWP算法相比OWP-p、Ows-OWP和OWP-e算法在运行时间上分别提升了2.653、1.348、3.592倍,在内存消耗上分别减少了3.51%、0.07%、5%,说明OWP算法可以更高效地挖掘出用户感兴趣的模式。此外,OWP算法在以D1数据集为基础的6倍大小的数据集上的运行时间比D1数据集增长了3.763倍,内存消耗增长了2.310倍,运行时间和内存消耗的增加倍数均小于数据集大小的增加倍数,说明OWP算法具有良好的可扩展性。 展开更多
关键词 序列模式挖掘 项集挖掘 间隙约束 一次性条件 弱间隙约束
在线阅读 下载PDF
高平均模糊效用项集挖掘算法
10
作者 王斌 李晓华 +1 位作者 周伟 胡克勇 《计算机工程与设计》 北大核心 2024年第5期1398-1405,共8页
为解决高模糊效用项集挖掘算法中存在的挖掘结果中含有大量无效的长项集以及搜索空间过大的问题,提出一种高平均模糊效用项集挖掘算法HAFUIM(high average fuzzy utility itemset mining algorithm)。定义平均模糊效用,考虑项集的模糊... 为解决高模糊效用项集挖掘算法中存在的挖掘结果中含有大量无效的长项集以及搜索空间过大的问题,提出一种高平均模糊效用项集挖掘算法HAFUIM(high average fuzzy utility itemset mining algorithm)。定义平均模糊效用,考虑项集的模糊效用和长度的关系,解决倾向于挖掘长项集的问题;提出平均模糊上限模型和4种剪枝性质,缩小搜索空间;设计平均模糊列表结构用于存储必要的效用信息,减少数据库扫描次数。通过仿真实验验证了所提算法的可行性和高效性。 展开更多
关键词 数据挖掘 项集挖掘 高模糊效用 平均模糊效用 平均模糊上限模型 平均模糊列表 剪枝策略
在线阅读 下载PDF
Apriori算法的三种优化方法 被引量:71
11
作者 徐章艳 刘美玲 +2 位作者 张师超 卢景丽 区玉明 《计算机工程与应用》 CSCD 北大核心 2004年第36期190-192,202,共4页
通过对Apriori算法的思想和性能的分析,认为Apriori算法存在以下三点不足:(1)由K阶频繁集生成K+1阶候选频繁集时,在K+1阶候选频繁集中过滤掉非频繁集的策略值得进一步改进;(2)连接程序中相同的项目重复比较太多,因而其效率值得进一步改... 通过对Apriori算法的思想和性能的分析,认为Apriori算法存在以下三点不足:(1)由K阶频繁集生成K+1阶候选频繁集时,在K+1阶候选频繁集中过滤掉非频繁集的策略值得进一步改进;(2)连接程序中相同的项目重复比较太多,因而其效率值得进一步改进;(3)在回扫数据库时有许多不必比较的项目或事务重复比较。根据上述三点不足,提出了相应的三种优化策略来优化Apriori算法,得到一效率较高的改进Apriori算法。 展开更多
关键词 关联规则 APRIORI算法 频繁项集 非频繁项集
在线阅读 下载PDF
一种新的频繁项集精简表示方法及其挖掘算法的研究 被引量:18
12
作者 宋威 李晋宏 +1 位作者 徐章艳 杨炳儒 《计算机研究与发展》 EI CSCD 北大核心 2010年第2期277-285,共9页
频繁项集挖掘是数据挖掘研究领域的一个基本问题,其瓶颈在于频繁项集全集的结果过多,冗余现象严重.主要的解决思路是只挖掘全体频繁项集中有代表性的子集,使得这种子集或者可满足应用的需要或者可由它们导出其他项集.最大项集和闭项集... 频繁项集挖掘是数据挖掘研究领域的一个基本问题,其瓶颈在于频繁项集全集的结果过多,冗余现象严重.主要的解决思路是只挖掘全体频繁项集中有代表性的子集,使得这种子集或者可满足应用的需要或者可由它们导出其他项集.最大项集和闭项集便是这类解决方案中两种最典型的子集形式.在最大项集和闭项集的基础上,提出了元项集这一新的频繁项集精简表示方法.首先,证明了最大项集和闭项集都是元项集的特例,且元项集所包含的项集数目介于二者之间;其次,讨论了元项集的性质.最后,通过在闭项集挖掘算法DCI-Closed-Index的基础上引入剪枝策略,设计了一个元项集挖掘算法.实验结果表明,所提出的挖掘算法是有效的和高效的. 展开更多
关键词 数据挖掘 关联规则 最大项集 闭项集 元项集
在线阅读 下载PDF
利用项集有序特性改进Apriori算法 被引量:11
13
作者 刘美玲 徐章艳 +3 位作者 卢景丽 区玉明 袁鼎荣 吴信东 《广西师范大学学报(自然科学版)》 CAS 2004年第1期33-37,共5页
Apriori算法是挖掘关联规则的一个经典算法,通过分析、研究该算法的基本思想,并利用项集的有序特性对其进行改进,减少了生成的候选集数量,从而提高算法的效率.
关键词 APRIORI算法 挖掘关联规则 非频繁项集 有序特性 数据挖掘
在线阅读 下载PDF
高效用项集挖掘算法 被引量:9
14
作者 祝孔涛 李兴建 王乐 《计算机工程与设计》 CSCD 北大核心 2013年第12期4220-4225,共6页
现有高效用项集挖掘算法主要采用项集枚举和两阶段方法 (或称为候选项集测试方法),后者时空效率的主要瓶颈在于候选项集过多。针对该问题,采用降低候选项集twu值,及利用项最大最小效用值来估计候选项集的效用值等策略,进而进行剪枝,从... 现有高效用项集挖掘算法主要采用项集枚举和两阶段方法 (或称为候选项集测试方法),后者时空效率的主要瓶颈在于候选项集过多。针对该问题,采用降低候选项集twu值,及利用项最大最小效用值来估计候选项集的效用值等策略,进而进行剪枝,从而有效地提高挖掘算法的时间和空间效率。实验采用真实数据集和合成数据集进行算法性能测试,实验结果表明改进后的算法性能得到较大的提高。 展开更多
关键词 效用 高效用项集 频繁项集 候选项集 数据挖掘
在线阅读 下载PDF
数据挖掘中关联规则的一种高效Apriori算法 被引量:29
15
作者 李清峰 杨路明 +1 位作者 张晓峰 龙艳军 《计算机应用与软件》 CSCD 北大核心 2004年第12期84-86,共3页
在数据挖掘中关联规则的频繁项集计算时 ,通过一种改进的Apriori算法 ,即用升序替代原来的按字母次序对项集进行排序 ,可大大精简候选频繁集 ,而且能保持频繁集的完整性 ,减少计算开销。
关键词 数据挖掘 关联规则 数据库 频繁项集 APRIORI算法
在线阅读 下载PDF
基于DDMINER分布式数据库系统中频繁项目集的更新 被引量:15
16
作者 吉根林 杨明 +1 位作者 赵斌 孙志挥 《计算机学报》 EI CSCD 北大核心 2003年第10期1387-1392,共6页
给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项... 给出了一种分布式数据挖掘系统的体系结构DDMINER ,对分布式数据库系统中频繁项目集的更新问题进行探讨 ,既考虑了数据库中事务增加的情况 ,又考虑了事务删除的情况 ;提出了一种基于DDMINER的局部频繁项目集的更新算法ULF和全局频繁项目集的更新算法UGF .该算法能够产生较少数量的候选频繁项目集 ,在求解全局频繁项目集过程中 ,传送候选局部频繁项目集支持数的通信量为O(n) ;将文章提出的算法用Java语言加以实现 ,并对算法性能进行了研究 ;实验结果表明这些算法是正确、可行的 ,并且具有较高的效率. 展开更多
关键词 分布式数据库系统 频繁项目集 分布式数据挖掘系统 体系结构 DDMINER
在线阅读 下载PDF
基于消费行为的Apriori算法研究 被引量:8
17
作者 骆嘉伟 彭蔓蔓 +1 位作者 陈景燕 王思玮 《计算机工程》 CAS CSCD 北大核心 2003年第5期72-73,118,共3页
介绍了关联规则的数据挖掘,对布尔关联规则中的经典算法——Apriori算法进行了分析和评价,指出了基本Apriori算法的不足,并提出具有广泛适应性的改进算法。此算法既提高在扫描数据库过程中的信息获取率,又及时剔除超集不是频繁项集... 介绍了关联规则的数据挖掘,对布尔关联规则中的经典算法——Apriori算法进行了分析和评价,指出了基本Apriori算法的不足,并提出具有广泛适应性的改进算法。此算法既提高在扫描数据库过程中的信息获取率,又及时剔除超集不是频繁项集的项集,进一步缩减项集的潜在规模,提高了频繁项集生成的效率。 展开更多
关键词 消费行为 APRIORI算法 数据挖掘 关联规则 候选项集 频繁项集 数据库
在线阅读 下载PDF
关联规则挖掘中若干关键技术的研究 被引量:62
18
作者 陈耿 朱玉全 +3 位作者 杨鹤标 陆介平 宋余庆 孙志挥 《计算机研究与发展》 EI CSCD 北大核心 2005年第10期1785-1789,共5页
Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:①如何确定候选频繁项目集和计算项目集的支持数;②如何减少候选频繁项目集的个数以及扫描数据库的次数·目前已提出了许多改进方法来解... Apriori类算法已经成为关联规则挖掘中的经典算法,其技术难点及运算量主要集中在以下两个方面:①如何确定候选频繁项目集和计算项目集的支持数;②如何减少候选频繁项目集的个数以及扫描数据库的次数·目前已提出了许多改进方法来解决第2个问题,并已取得了很好的效果·然而,对于第1个问题,仍沿用Apriori算法中的解决方案,其运算量是较大的·为此,提出了一种基于二进制形式的候选频繁项目集生成和相应的计算支持数算法,该算法只需对挖掘对象进行一些“或”、“与”、“异或”等逻辑运算操作,显著降低了算法的实现难度,将该算法与Apriori类算法相结合,可以进一步提高算法的执行效率,实验结果也表明算法是有效、快速的· 展开更多
关键词 数据挖掘 关联规则 频繁项目集
在线阅读 下载PDF
基于频繁项集特性的Apriori算法的改进 被引量:25
19
作者 高宏宾 潘谷 黄义明 《计算机工程与设计》 CSCD 北大核心 2007年第10期2273-2275,2378,共4页
Apriori算法是关联规则中一种重要算法。Apriori算法在求出频繁项集的过程中,需要扫描事务项集里的数据。由于事务项集里只是部分数据有用,所以改进算法,缩小所需扫描的事务项集大小,并提出了一种简单的数据结构——树型结构来存储事务... Apriori算法是关联规则中一种重要算法。Apriori算法在求出频繁项集的过程中,需要扫描事务项集里的数据。由于事务项集里只是部分数据有用,所以改进算法,缩小所需扫描的事务项集大小,并提出了一种简单的数据结构——树型结构来存储事务项集数据,使得算法在数据集量巨大时,性能得到有效提高,并用实例验证了这些改进能够正确、有效、快速地实现该算法。 展开更多
关键词 数据挖掘 关联规则 频繁项集 APRIORI算法 事务项集
在线阅读 下载PDF
基于改进Apriori算法的入侵检测系统研究 被引量:12
20
作者 崔贯勋 李梁 +2 位作者 王柯柯 倪伟 苟光磊 《计算机工程与科学》 CSCD 北大核心 2011年第4期40-44,共5页
本文在对关联规则挖掘中Apriori算法的深入研究和分析的基础上,发现并指出了该算法存在的不足,改进了在由K阶频繁项集生成K+1阶候选项集时的连接和剪枝策略及对事务数据库的处理方式,它在时间和空间上提高了Apriori算法的效率。根据改... 本文在对关联规则挖掘中Apriori算法的深入研究和分析的基础上,发现并指出了该算法存在的不足,改进了在由K阶频繁项集生成K+1阶候选项集时的连接和剪枝策略及对事务数据库的处理方式,它在时间和空间上提高了Apriori算法的效率。根据改进后的算法提出了入侵检测方法,该方法实现了规则库的自动更新,极大地提高了系统的安全性和可靠性。实验结果表明,该方法明显提高了频繁项目集的生成效率,入侵检测系统知识规则库的生成效率也得到改善。 展开更多
关键词 关联规则 APRIORI 频繁项集 候选项集 入侵检测
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部