Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and h...Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.展开更多
Switchgrass(Panicum virgatum L.)as a high-quality bioenergy crop that can effectively improve saline-alkali soil has strong resistance to stress and grows well in marginal soil and some abiotic stress environments.Thi...Switchgrass(Panicum virgatum L.)as a high-quality bioenergy crop that can effectively improve saline-alkali soil has strong resistance to stress and grows well in marginal soil and some abiotic stress environments.This study used alkali-sensitive genotype AM(AM-314/MS-155)and alkali-tolerant genotype ALA(Alamo)as experimental materials to investigate molecular mechanisms of switchgrass tolerance to alkali-salt stress.When the plants were grown to E5 stage,the alkali-salt stress treatment was carried out by soaking method(Na2CO3:NaHCO3=1:9,C(Na+)=150 mmol·L-1 and pH=9.0)and fresh root samples were taken after treatments for 0(CK),6 and 24 h,respectively,the differentially expressed microRNAs and their regulatory network were analyzed.A total of 1049 known miRNAs and 68 novel miRNAs were identified.Seventy-two differentially expressed miRNAs in ALA were more than three times higher than those in AM and 36.1%differentially expressed miRNAs was significantly down-regulated(p<0.05).Through analyses of differentially expressed miRNAs and their target genes,it was found that under alkali-salt stress,differentially expressed miRNAs in AM were mainly involved in the regulation of cellular ROS clearance,ethylene signal transduction,and root,leaf and flower development.MiRNAs in ALA were also involved in water transport,DNA methylation,response to high osmotic pressure,activation of stress-related genes and more complex responses to alkali-salt stress processes,but those in AM were not.ALA was significantly higher than AM in the number of microRNAs responding to alkali-salt stress and in the functional diversity of their regulatory target genes.展开更多
Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Sinc...Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.展开更多
The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firs...The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firstly,the hybrid algorithm is based on the tabu search and large neighborhood search(TLNS),servicing as the framework.Moreover,two components are incorporated into the hybrid algorithm.One is the parallel constructive heuristic(PCH)that is used to construct a set of initial solutions and find some high quality solutions,and the other is the small neighborhood search(SNS)which is designed to improve the new constructed solutions.The computational results show that the proposed hybrid algorithm(PCH+TLNS+SNS)obtains100best known values out of109public instances,among these89instances get their best known values with100%success rate.By comparing with the well-known related algorithms,computational results demonstrate the effectiveness,efficiency and robustness of the proposed algorithm.展开更多
Combined technology of SDS-CuO/TiO2 photocatalysis and sequencing batch reactor (SBR) were applied to treating dyestuff wastewater. Photocatalysis was carried out in a spiral up-flow type reactor as pre-treatment. S...Combined technology of SDS-CuO/TiO2 photocatalysis and sequencing batch reactor (SBR) were applied to treating dyestuff wastewater. Photocatalysis was carried out in a spiral up-flow type reactor as pre-treatment. SDS-CuO/TiO2 photocatalyst was prepared by modification of nano-TiO2 using CuO and sodium dodecyl sulfate (SDS). Results show that the SDS-CuO/TiO2 photocatalyst contains two kinds of crystals, including TiO2 and CuO. The band gap of this photocatalyst is 1.56 eV, indicating that it can be excited by visible light (2〈794.87 nm). And characterization also shows that there are alkyl groups on its surface. It takes 40 rain to improve the biodegradability of dyestuff wastewater. Five-day biochemical oxygen demand (BODs) and dehydrogenase activity (DHA) of wastewater reach the maximum value when dissolved oxygen is higher than 2.97 mg/L. SBR reactor was used to treat this biodegradability improved wastewater. Chemical oxygen demand (COD) and colority decline to 72 mg/L and 20 times, respectively, when the sludge loading is 0.179 kg(COD)/[kg(MLSS)'d], dissolved oxygen is 4.09 mg/L and aeration time is 10 h.展开更多
High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synth...High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.展开更多
The genomes of most major crops,including cotton,will be fully sequenced in the next few years.Cotton is unusual,although not unique,in that we will need to sequence not only
The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were e...The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.展开更多
Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton c...Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high展开更多
The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dyna...The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.展开更多
Background and objective Low-density computed tomography(LDCT)improved early lung cancer diagnosis but introduces an excess of false-positive pulmonary nodules data.Hence,accurate diagnosis of early-stage lung cancer ...Background and objective Low-density computed tomography(LDCT)improved early lung cancer diagnosis but introduces an excess of false-positive pulmonary nodules data.Hence,accurate diagnosis of early-stage lung cancer remains challenging.The purpose of the study was to assess the feasibility of using circulating tumour cells(CTCs)to differentiate malignant from benign pulmonary nodules.Materials and methods 122 patients with suspected malignant pulmonary nodules detected on chest CT in preparation for surgery were prospectively recruited.Peripheral blood samples were collected before surgery,and CTCs were identified upon isolation by size of epithelial tumour cells and morphological analysis.Laser capture microdissection,MALBAC amplification,and whole-exome sequencing were performed on 8 samples.The diagnostic efficacy of CTCs counting,and the genomic variation profile of benign and malignant CTCs samples were analysed.Results Using 2.5 cells/5 m L as the cut-off value,the area under the receiver operating characteristic curve was of 0.651(95%confidence interval:0.538-0.764),with a sensitivity and specificity of 0.526 and 0.800,respectively,and positive and negative predictive values of 91.1%and 30.3%,respectively.Distinct sequence variations differences in DNA damage repair-related and driver genes were observed in benign and malignant samples.TP53 mutations were identified in CTCs of four malignant cases;in particular,g.7578115T>C,g.7578645C>T,and g.7579472G>C were exclusively detected in all four malignant samples.Conclusion CTCs play an ancillary role in the diagnosis of pulmonary nodules.TP53 mutations in CTCs might be used to identify benign and malignant pulmonary nodules.展开更多
Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but ...Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500展开更多
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l...When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction.展开更多
Using double-stranded RNA(dsRNA)technology and sequence-independent amplification(SIA),the molecular identification on infected Rehmannia glutinosa in the field with mosaic symptoms was performed and the whole-genome ...Using double-stranded RNA(dsRNA)technology and sequence-independent amplification(SIA),the molecular identification on infected Rehmannia glutinosa in the field with mosaic symptoms was performed and the whole-genome of the Rehmannia mosaic virus(ReMV)Shanxi isolate(ReMV-SX)was sequenced.Sequencing analysis showed that the virus that infected Rehmannia glutinosa was Rehmannia mosaic virus(ReMV).The full-length of the obtained ReMV-SX sequence(GenBank accession no.JX575184)was 6395 nt,containing four open reading frames(ORFs).The sequence homology analysis of the complete nucleotide sequence showed that ReMV-SX was 93.8%-97.0%homologous to ReMV in Tobamovirus subgroup Ⅰ,while only 49.8%-58.9%homologous to the isolates in subgroups Ⅱ and Ⅲ of the same genus.Phylogenetic analysis showed that ReMV-SX and ReMV-Henan formed a separate branch and had the closest genetic relationship.The results laid the foundation for ongoing researches in the taxonomic status and evolution of ReMV and for further investigating the pathogenic mechanism of ReMV infecting Rehmannia glutinosa.展开更多
A subgroup J avian leukosis virus (AVL-J), designated as ZH-08, was isolated from a breeder flock in Guangdong province with a novel hemangioma case. The identification results of ELISA test, PCR and immunofluoresecen...A subgroup J avian leukosis virus (AVL-J), designated as ZH-08, was isolated from a breeder flock in Guangdong province with a novel hemangioma case. The identification results of ELISA test, PCR and immunofluoresecence assay (IFA) specific for ALV-J were all positive. Based on the public full-length proviral genome sequence of ALV-J prototype strain HPRS-103, three pairs of primers were synthesized. The full-length proviral genome sequence of ZH-08 isolate is 7597 bp, which has a little difference with that of published full-length genome sequences, but its organization corresponds with typical retroviral genome structure; and known oncogenes were not included in its genome. According to the gp85 sequence comparison of ZH-08 isolate with those of the other reference strains in China and abroad, the highest similarity (93.7%) was with the YZ9901 isolate. Phylogenetic analysis, based on the gp85 gene, showed that the ZH-08 isolated here had the closest linkage to the SD07LK1 isolate. This study provides the basis for the biological characterization and pathogenesis research of the ZH-08 isolate.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
基金Supported by the National Natural Science Foundations of China(3127218631301791)
文摘Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.
基金Supported by the Natural Science Fund of Heilongjiang Province(LC2016009)(GH)U.S.Department of Energy and U.S.Department of Agricultural Plant Feedstocks Genomics for Bioenergy Program(DE-SC0008338 to XZ and BZ)。
文摘Switchgrass(Panicum virgatum L.)as a high-quality bioenergy crop that can effectively improve saline-alkali soil has strong resistance to stress and grows well in marginal soil and some abiotic stress environments.This study used alkali-sensitive genotype AM(AM-314/MS-155)and alkali-tolerant genotype ALA(Alamo)as experimental materials to investigate molecular mechanisms of switchgrass tolerance to alkali-salt stress.When the plants were grown to E5 stage,the alkali-salt stress treatment was carried out by soaking method(Na2CO3:NaHCO3=1:9,C(Na+)=150 mmol·L-1 and pH=9.0)and fresh root samples were taken after treatments for 0(CK),6 and 24 h,respectively,the differentially expressed microRNAs and their regulatory network were analyzed.A total of 1049 known miRNAs and 68 novel miRNAs were identified.Seventy-two differentially expressed miRNAs in ALA were more than three times higher than those in AM and 36.1%differentially expressed miRNAs was significantly down-regulated(p<0.05).Through analyses of differentially expressed miRNAs and their target genes,it was found that under alkali-salt stress,differentially expressed miRNAs in AM were mainly involved in the regulation of cellular ROS clearance,ethylene signal transduction,and root,leaf and flower development.MiRNAs in ALA were also involved in water transport,DNA methylation,response to high osmotic pressure,activation of stress-related genes and more complex responses to alkali-salt stress processes,but those in AM were not.ALA was significantly higher than AM in the number of microRNAs responding to alkali-salt stress and in the functional diversity of their regulatory target genes.
文摘Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.
基金Project(51435009) supported by the National Natural Science Foundation of ChinaProject(LQ14E080002) supported by the Zhejiang Provincial Natural Science Foundation of ChinaProject supported by the K.C.Wong Magna Fund in Ningbo University,China
文摘The car sequencing problem(CSP)concerns a production sequence of different types of cars in the mixed-model assembly line.A hybrid algorithm is proposed to find an assembly sequence of CSP with minimum violations.Firstly,the hybrid algorithm is based on the tabu search and large neighborhood search(TLNS),servicing as the framework.Moreover,two components are incorporated into the hybrid algorithm.One is the parallel constructive heuristic(PCH)that is used to construct a set of initial solutions and find some high quality solutions,and the other is the small neighborhood search(SNS)which is designed to improve the new constructed solutions.The computational results show that the proposed hybrid algorithm(PCH+TLNS+SNS)obtains100best known values out of109public instances,among these89instances get their best known values with100%success rate.By comparing with the well-known related algorithms,computational results demonstrate the effectiveness,efficiency and robustness of the proposed algorithm.
基金Project(CDJZR11210009) supported by the Fundamental Research Funds for the Central Universities of China
文摘Combined technology of SDS-CuO/TiO2 photocatalysis and sequencing batch reactor (SBR) were applied to treating dyestuff wastewater. Photocatalysis was carried out in a spiral up-flow type reactor as pre-treatment. SDS-CuO/TiO2 photocatalyst was prepared by modification of nano-TiO2 using CuO and sodium dodecyl sulfate (SDS). Results show that the SDS-CuO/TiO2 photocatalyst contains two kinds of crystals, including TiO2 and CuO. The band gap of this photocatalyst is 1.56 eV, indicating that it can be excited by visible light (2〈794.87 nm). And characterization also shows that there are alkyl groups on its surface. It takes 40 rain to improve the biodegradability of dyestuff wastewater. Five-day biochemical oxygen demand (BODs) and dehydrogenase activity (DHA) of wastewater reach the maximum value when dissolved oxygen is higher than 2.97 mg/L. SBR reactor was used to treat this biodegradability improved wastewater. Chemical oxygen demand (COD) and colority decline to 72 mg/L and 20 times, respectively, when the sludge loading is 0.179 kg(COD)/[kg(MLSS)'d], dissolved oxygen is 4.09 mg/L and aeration time is 10 h.
基金Projects(ZR2013BL010,ZR2012DL05)supported by the Natural Science Foundation of Shandong Province,ChinaProject(4041412016)supported by the Research Excellence Award of Shandong University of Technology,ChinaProjects(2013GG03116,2011GG02115)supported by the Science and Technology Development Planning Project of Zibo,China
文摘High salinity industrial wastewater is difficult to treat using biological treatment system because of the high concentrations of salt.The potential of a sequencing batch biofilm reactor(SBBR)process in treating synthetic high salinity wastewater was evaluated at laboratory scale during a 110-day operation.The reactor was operated in a 12 h cycle,and each cycle consisted of 0.25 h influent addition,8 h aeration,3 h anoxic reaction,0.5 h sedimentation and 0.25 h effluent withdrawal.Gradual increase in salinity gradient was applied during the acclimatization period.The acclimated SBBR system was demonstrated to be an effective process to remove organic compounds and ammonia nitrogen under high salinity conditions with chemical oxygen demand(COD)and ammonia nitrogen(NH3-N)removal efficiencies of 88% and 80%,respectively.The microscopic examination indicated that rather than rotifers or vorticella,the zoogloea,filamentous fungus mingled with a small quantity of swimming infusorians were dominant bacteria in SBBR system.The removal efficiencies close to 80% in COD and 75% in NH3-N were achieved at an organic loading rate(OLR)of 0.96 kg COD/(m3·d),pH of 7.0,salinity of 14 g/L and NH3-N of 30 mg/L.
文摘The genomes of most major crops,including cotton,will be fully sequenced in the next few years.Cotton is unusual,although not unique,in that we will need to sequence not only
基金Project(2006AA06Z318) supported by the National High-Tech Research and Development Program of China
文摘The aerobic granular sludge was cultivated in a pilot-scale sequencing batch reactor (SBR), and some of the granules were stored at 8 ℃ for 150 d. Extracellular polymeric substances (EPS) of sludge samples were extracted and analyzed during the granulation and storage process. The results show that the contents of protein and EPS increase along with the granulation process, while polysaccharides remain almost unchanged. The content of protein in EPS is almost two-fold larger than that of polysaccharides in granular sludge cultivated with municipal wastewater. Moreover, some of the granules disintegrate during storage, corresponding to the decrease of protein contents in EPS. Three peaks are identified in three-dimensional excitation emission matrix (EEM) fluorescence spectra of the EPS in the aerobic granules. Two peaks (A and B) are attributed to the protein-like fluorophores, and the third (peak C) is related to visible fulvic-like substances. Peak A gradually disappears during storage, while a new peak related to ultraviolet fulvic acid (peak D) is formed. The formation and the stability of aerobic granules are closely dependent on the quantity and composition of EPS proteins. Peak C has no obvious changes during granulation, while the fulvic-like substances present an increase in fluorescence intensities during storage, accompanied with an increase in structural complexity. The fulvie-like substances are also associated with the disintegration of the aerobic granules.
文摘Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high
基金supported by the Major Projects for Science and Technology Innovation 2030 (2018AAA0100805)。
文摘The threat sequencing of multiple unmanned combat air vehicles(UCAVs) is a multi-attribute decision-making(MADM)problem. In the threat sequencing process of multiple UCAVs,due to the strong confrontation and high dynamics of the air combat environment, the weight coefficients of the threat indicators are usually time-varying. Moreover, the air combat data is difficult to be obtained accurately. In this study, a threat sequencing method of multiple UCAVs is proposed based on game theory by considering the incomplete information. Firstly, a zero-sum game model of decision maker( D) and nature(N)with fuzzy payoffs is established to obtain the uncertain parameters which are the weight coefficient parameters of the threat indicators and the interval parameters of the threat matrix. Then,the established zero-sum game with fuzzy payoffs is transformed into a zero-sum game with crisp payoffs(matrix game) to solve. Moreover, a decision rule is addressed for the threat sequencing problem of multiple UCAVs based on the obtained uncertain parameters. Finally, numerical simulation results are presented to show the effectiveness of the proposed approach.
基金supported by the grant from China-Japan Friendship Hospital Talent Introduction Research Start-up Fund(to Guang ying ZHU)(No.2016-RC-4)。
文摘Background and objective Low-density computed tomography(LDCT)improved early lung cancer diagnosis but introduces an excess of false-positive pulmonary nodules data.Hence,accurate diagnosis of early-stage lung cancer remains challenging.The purpose of the study was to assess the feasibility of using circulating tumour cells(CTCs)to differentiate malignant from benign pulmonary nodules.Materials and methods 122 patients with suspected malignant pulmonary nodules detected on chest CT in preparation for surgery were prospectively recruited.Peripheral blood samples were collected before surgery,and CTCs were identified upon isolation by size of epithelial tumour cells and morphological analysis.Laser capture microdissection,MALBAC amplification,and whole-exome sequencing were performed on 8 samples.The diagnostic efficacy of CTCs counting,and the genomic variation profile of benign and malignant CTCs samples were analysed.Results Using 2.5 cells/5 m L as the cut-off value,the area under the receiver operating characteristic curve was of 0.651(95%confidence interval:0.538-0.764),with a sensitivity and specificity of 0.526 and 0.800,respectively,and positive and negative predictive values of 91.1%and 30.3%,respectively.Distinct sequence variations differences in DNA damage repair-related and driver genes were observed in benign and malignant samples.TP53 mutations were identified in CTCs of four malignant cases;in particular,g.7578115T>C,g.7578645C>T,and g.7579472G>C were exclusively detected in all four malignant samples.Conclusion CTCs play an ancillary role in the diagnosis of pulmonary nodules.TP53 mutations in CTCs might be used to identify benign and malignant pulmonary nodules.
文摘Cotton is an important cash crop in the world,and it plays an irreplaceable role in China's national economy.Cultivated upland cotton(Gossypium hirsutum L.) represents 95% of the world's cotton production,but it has a complex allotetraploid genome that contains at least 30000 genes in 2500
基金Project(61472026)supported by the National Natural Science Foundation of ChinaProject(2014J410081)supported by Guangzhou Scientific Research Program,China
文摘When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction.
基金Supported by the National Natural Science Foundation of China(31772130)China Agriculture Research System(CARS-21)。
文摘Using double-stranded RNA(dsRNA)technology and sequence-independent amplification(SIA),the molecular identification on infected Rehmannia glutinosa in the field with mosaic symptoms was performed and the whole-genome of the Rehmannia mosaic virus(ReMV)Shanxi isolate(ReMV-SX)was sequenced.Sequencing analysis showed that the virus that infected Rehmannia glutinosa was Rehmannia mosaic virus(ReMV).The full-length of the obtained ReMV-SX sequence(GenBank accession no.JX575184)was 6395 nt,containing four open reading frames(ORFs).The sequence homology analysis of the complete nucleotide sequence showed that ReMV-SX was 93.8%-97.0%homologous to ReMV in Tobamovirus subgroup Ⅰ,while only 49.8%-58.9%homologous to the isolates in subgroups Ⅱ and Ⅲ of the same genus.Phylogenetic analysis showed that ReMV-SX and ReMV-Henan formed a separate branch and had the closest genetic relationship.The results laid the foundation for ongoing researches in the taxonomic status and evolution of ReMV and for further investigating the pathogenic mechanism of ReMV infecting Rehmannia glutinosa.
基金supported by National Science Foundation of Guangdong Province(Grant No.8151064201000065)Special Fund for Agro-scientific Research in the Public Interest(200803019)to Weisheng Cao+2 种基金NSFC-Guangdong Union Foundation(GrantNo.U0831002)National Natural Science Foundation(Grant No.30771612)Key Program of Science and Technology Development of Guangdong Province(Grant No.2009A020101006)to Ming Liao
文摘A subgroup J avian leukosis virus (AVL-J), designated as ZH-08, was isolated from a breeder flock in Guangdong province with a novel hemangioma case. The identification results of ELISA test, PCR and immunofluoresecence assay (IFA) specific for ALV-J were all positive. Based on the public full-length proviral genome sequence of ALV-J prototype strain HPRS-103, three pairs of primers were synthesized. The full-length proviral genome sequence of ZH-08 isolate is 7597 bp, which has a little difference with that of published full-length genome sequences, but its organization corresponds with typical retroviral genome structure; and known oncogenes were not included in its genome. According to the gp85 sequence comparison of ZH-08 isolate with those of the other reference strains in China and abroad, the highest similarity (93.7%) was with the YZ9901 isolate. Phylogenetic analysis, based on the gp85 gene, showed that the ZH-08 isolated here had the closest linkage to the SD07LK1 isolate. This study provides the basis for the biological characterization and pathogenesis research of the ZH-08 isolate.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.