This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limit...High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries.展开更多
Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature...Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.展开更多
To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the ...To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.展开更多
Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes ...Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes on the ductile-brittle transition behavior of this steel was undertaken. The ductile-brittle transition temperatures of the steel by two different quenching processes were also determined. The results show that a good combination of mechanical properties can be obtained through austenitizing experimental steel at 800 ℃ or 890 ℃ followed by tempering at 630 ℃. Ductile-to-brittle transition temperature of 28CrMnMoV steel austenitized at 800 ℃ followed by tempering at 640 ℃ is about -73 ℃, which is much lower than the value -37 ℃ when the steel was austenitized at 890℃ and then tempered at 650 ℃. This indicates that subcritical quenching process could decrease largely the ductile-to-brittle transition temperature of 28CrMnMoV steel.展开更多
In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the...In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the quenching medium. To demonstrate the effectiveness of the proposed new quenching technology, both numerical analysis and experimental study were performed. The new quenching technology was analyzed using finite element method. The combined effects of the temperature, stress and microstructure fields were investigated considering nonlinear material properties. Finally, an experimental study was performed to verify the effectiveness of the proposed new quenching technology. The numerical results show that internal stress is affected by both thermal stress and transformation stress. In addition, the direction of the internal stress is changed several times due to thermal interaction and microstructure evolution during the quenching process. The experimental results show that the proposed new quenching technology significantly improves the mechanical properties and microstructures of the cam. The tensile strength, the impact resistance and the hardness value of the cam by the proposed new quenching technology are improved by 4.3%, 8.9% and 3.5% compared with those by the traditional quenching technology. Moreover, the residual stress and cam shape deformation are reduced by 40.0% and 48.9% respectively for the cam manufactured by the new quenching technology.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spin...A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.展开更多
Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and cont...Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and controlled to ensure the thermal stability and the dielectric strength as well. To measure the level, capacitance method and differential pressure method are usually used. However, each method has installation difficulties and measurement errors for unsteady state operation with varying system pressure. A new liquid level meter using a 2G HTS conductor is described, which has similar structure with the liquid helium level meter with NbTi filament. The level meter is fabricated with a parallel connected heater, which helps the separation of the superconducting region and normal region, considering the critical temperature, large heat capacity of conductor and cooling characteristics. The level of liquid nitrogen can be obtained from the measured voltage signal along the 2G HTS conductor. Design, fabrication and test results of the new liquid nitrogen level meter are presented.展开更多
To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liqu...To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-ro...Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.展开更多
he solutionfluorescence quenching mechanisms of poly(methylcyclohexylsilane),poly(methylphenethylsilane), poly(methylcyclohexylsilanecomethylphenethylsilane) and poly(methylphenylsilane) are studied by means of steady...he solutionfluorescence quenching mechanisms of poly(methylcyclohexylsilane),poly(methylphenethylsilane), poly(methylcyclohexylsilanecomethylphenethylsilane) and poly(methylphenylsilane) are studied by means of steadystate fluorescence,timeresolved fluorescence and UV absorption. The results show that the fluorescence quenching for polysilanes by carbon tetrachloride is the static quenching with energy migration, which is also supported by the qualitative results of the fluorescence quenching behaviors of polysilane by nitromethane (CH3NO2) and 2, 4, 7trinitrofluorenone(TNF).展开更多
To understand the response characteristics of soybean seedling resistance systems to high-temperature stress,the spring soybean varieties HN44 and HN65 were selected in this study as the experimental materials,as they...To understand the response characteristics of soybean seedling resistance systems to high-temperature stress,the spring soybean varieties HN44 and HN65 were selected in this study as the experimental materials,as they had substantial differences in stress resistance.Soybean physiological status was studied under high-temperature stress.Sand culture was used in the experiment,and soybeans at the seedling stage were treated with high-temperature stress.The results showed that the activity of antioxidases and osmotic regulatory substance contents in soybean increased under high-temperature treatment for a certain period of time,the activity of antioxidases and osmotic regulatory substance contents decreased after continuous treatment,and high temperatures continuously increased malondialdehyde contents in the two varieties.At high temperatures,the antioxidant activity and osmotic regulator contents of HN44 were higher than those of HN65,and the malondialdehyde contents of HN44 were higher than those of HN65.The above results showed that HN44 soybeans exhibited significantly higher resistance to high-temperature stress than HN65 variety.展开更多
In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimat...In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.展开更多
P-arsanilic acid(p-ASA),as a kind of organoarsenic feed additive,has been widely used in poultry and swine breeding.However,it has caused the arsenic pollution around the farm.Currently data shows humic acid(HA)is clo...P-arsanilic acid(p-ASA),as a kind of organoarsenic feed additive,has been widely used in poultry and swine breeding.However,it has caused the arsenic pollution around the farm.Currently data shows humic acid(HA)is closely to the migration and transformation of p-ASA.Therefore,the interaction between p-ASA and HA was investigated by using the method of fluorescence quenching titration.The association constant changed from2.74 to 4.88 L·mol-1at a p H varying from 5 to 9 and reached the maximum at p H 7.In addition,log K varied from4.15 to 5.02 L·mol-1when the temperature increased from 15℃to 35℃.The log K increased with an increase in the concentration of HA.The dominant mechanism between p-ASA and HA is static quenching.The primary interaction force was likely the hydrogen bond,and the binding behavior occurred on the As-O stretch of p-ASA and the carboxylic acid C=O stretch of HA.The results showed that dissolved organic matters could affect the fate and biogeochemical cycling of organoarsenic pharmaceuticals in aquatic ecosystems.展开更多
A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, fo...A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, followed by water quenching at the sintering temperature. The synthetic conditions were optimized by orthogonal experiment. The results indicate that the fast quenching treatment can avoid the overgrowth of single crystal and improve its availability ratio of active material. The sintering temperature has the greatest effect on the electrochemical performance of sample. Next is the molar ratio of Li to Fe and the sintering time, respectively. The samples prepared in the optimized technical condition has the highest reversible discharge specific capacity of 149.8 mA·h/g.展开更多
Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of...Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of negative thermal quenching(NTQ)is not fully understood.In this study,we focus on upconversion(UC)and downshifting(DS)luminescence of Yb^(3+)/Er^(3+)with f-f transition rather than susceptible d-f transition of Eu^(2+)in Na_(3)Sc_(2)(PO_(4))_(3),aiming to get a more insightful view.The results show that thermally accelerated dynamic defects/ions contributes to the significant negative thermal quenching(NTQ)of UC luminescence and thermally stabilized DS luminescence by promoting the radiative transition and suppressing the non-radiative transition.The UC process with slow population rate is more susceptible to perturbation of Na+migration process with time scale equivalent to that of the former,resulting in evident NTQ of UC luminescence.This research opens an avenue for understanding the NTQ mechanism of luminescence via dynamic defects/ions.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and different...The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.展开更多
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
文摘High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries.
基金Project(51575414)supported by National Natural Science Foundation of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2015AAA005)supported by the project of Important Science and Technology Innovation Program of Hubei Province,China
文摘Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in Fe_xCr_(3-x)C and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The M_S(martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same M_S when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of M_S and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.
基金Projects(51979272,BZ2020066)supported by the National Natural Science Foundation of ChinaProjet supported by the Department of Science and Technology of Jiangsu Province,China。
文摘To investigate the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites,uniaxial compression test,variable-angle shear test,acoustic emission signal monitoring and the measurement of physical parameters including mass,size and P-wave velocity were carried out on granite samples treated at temperatures T ranging from 25 to 900℃.The results show that the density and P-wave velocity decrease gradually with increasing T.As the temperature increases,the peak compressive stress decreases while the peak strain increases,due to the fact that a high temperature induces the escaping of waters within granites,the expanding of mineral grains and the generations of fractures.With the increment of T,both the peak shear stress and the cohesion decrease,whereas the frictional angle increases.During the compressing and shearing tests,the maximum acoustic emission counts show a decreasing trend when T increases from 25 to 900℃.When T exceeds 573℃,the crystal lattice structure of quartz changes fromα-phase toβ-phase,decreasing the mechanical behavior of granites to a great extent.In addition,the results also indicate that T=500−600℃ is the critical temperature ramge to characterize the influence of temperature on the physical,mechanical and acoustic emission characteristics of granites.
基金Project(2008FJ1003)supported by the Hunan Province Science and Technology,China
文摘Effect of quenching process on the microstrucmre and mechanical properties of a kind of seamless tubes of steel 28CrMnMoV was investigated. Then, an investigation on the influence of two different quenching processes on the ductile-brittle transition behavior of this steel was undertaken. The ductile-brittle transition temperatures of the steel by two different quenching processes were also determined. The results show that a good combination of mechanical properties can be obtained through austenitizing experimental steel at 800 ℃ or 890 ℃ followed by tempering at 630 ℃. Ductile-to-brittle transition temperature of 28CrMnMoV steel austenitized at 800 ℃ followed by tempering at 640 ℃ is about -73 ℃, which is much lower than the value -37 ℃ when the steel was austenitized at 890℃ and then tempered at 650 ℃. This indicates that subcritical quenching process could decrease largely the ductile-to-brittle transition temperature of 28CrMnMoV steel.
基金Project(50875268) supported by the National Natural Science Foundation of China Project(CSTC2008AB3057) supported by Foundation of Chongqing Science and Technology Commission, China+1 种基金 Project(108107) supported by the Key Project of Ministry of Education of China Project(50925518) supported by the National Science Fund for Distinguished Young Scholars
文摘In order to obtain satisfactory mechanical properties for the cam used in high-power ship diesel engines, a new quenching technology was proposed by designing a two-stage quenching process with an alkaline bath as the quenching medium. To demonstrate the effectiveness of the proposed new quenching technology, both numerical analysis and experimental study were performed. The new quenching technology was analyzed using finite element method. The combined effects of the temperature, stress and microstructure fields were investigated considering nonlinear material properties. Finally, an experimental study was performed to verify the effectiveness of the proposed new quenching technology. The numerical results show that internal stress is affected by both thermal stress and transformation stress. In addition, the direction of the internal stress is changed several times due to thermal interaction and microstructure evolution during the quenching process. The experimental results show that the proposed new quenching technology significantly improves the mechanical properties and microstructures of the cam. The tensile strength, the impact resistance and the hardness value of the cam by the proposed new quenching technology are improved by 4.3%, 8.9% and 3.5% compared with those by the traditional quenching technology. Moreover, the residual stress and cam shape deformation are reduced by 40.0% and 48.9% respectively for the cam manufactured by the new quenching technology.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
基金Project(51775479)supported by the National Natural Science Foundation of ChinaProject(E2017203046)supported by the Natural Science Foundation of Hebei Province,China
文摘A two-pass annealing/quenching internal spinning process with small-end rotations is proposed to form a curved generatrix conical thin-walled shell.That is,annealing at 360°C for 2 h followed by the 1st pass spinning,and finally quenching in ice water after holding for 1 h at 498°C followed by the 2nd pass spinning.ABAQUS finite element software is used to simulate the internal spinning process of the products formed under different forming parameters.The distribution laws of spinning force,the stress and strain under different forming processes were compared and analyzed.The mechanical properties and microstructure of the products are subsequently analyzed.The results show that the strain and the residual stress in the skin area of the formed products under two-pass spinning process more uniform,and the hardness and the mechanical performance are improved.The microstructure of the products formed with the 0.15 mm thickness reduction at the 2nd pass is excellent.And the second phase grain size distributed uniformly in the range of 36μm.Whereas,the second phase particles are broken seriously and the size distribution inhomogeneity is increased when the thickness reduction in the skin area is greater than 0.20 mm at the 2nd pass spinning process.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Many kinds of high temperature superconductor (HTS) power machines such as HTS cable, HTS fault current limitcr and HTS magnet are cooled by liquid nitrogen. The level of liquid nitrogen should be monitored and controlled to ensure the thermal stability and the dielectric strength as well. To measure the level, capacitance method and differential pressure method are usually used. However, each method has installation difficulties and measurement errors for unsteady state operation with varying system pressure. A new liquid level meter using a 2G HTS conductor is described, which has similar structure with the liquid helium level meter with NbTi filament. The level meter is fabricated with a parallel connected heater, which helps the separation of the superconducting region and normal region, considering the critical temperature, large heat capacity of conductor and cooling characteristics. The level of liquid nitrogen can be obtained from the measured voltage signal along the 2G HTS conductor. Design, fabrication and test results of the new liquid nitrogen level meter are presented.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of ChinaProject(2019GHY112068)supported by the Key Research and Development of Shandong,China
文摘To explore the influence of double liquid quenching on the cutting performance of the 7A09 aluminum alloy,quasi-static compression and dynamic impact tests were carried out on the 7A09 aluminum alloy after double liquid quenching using an MTS810.23 universal testing machine and split-Hopkinson pressure bar(SHPB).The experimental data were fitted to obtain the Johnson–Cook constitutive model parameters of the alloy.Simulations of the machining process were carried out using the Deform-3D finite element software.The results showed that the rheological stress increased with the increase in strain rate and the decrease in temperature.The increase in the cutting speed and feed caused the cutting temperature to rise sharply,whereas the influence of the cutting amount on the cutting temperature was weak.Because of the presence of chip nodules,there was extremum in the cutting force vs cutting speed curves.The increase in the feed and cutting depth increased the cutting area Ac,so the cutting force also increased.The simulation results were verified by experiments.The simulation predictions were in good agreement with the test values,and the cutting force and temperature variations with the cutting parameters were the same.Thus,the correctness of the 7A09 aluminum alloy finite element model was verified.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
文摘Cu-Ni-Sn spinodal alloys(Spinodal bronze)are potential materials with robust applications in components associated with defence applications like bearings,propellers,bushes,and shafts of heavily loaded aircraft,off-road vehicles,and warships.This paper presents a comparative study using water,Brine solution,and SAE 40 oil as the quenching media in regular bronze(Cu-6Sn)and spinodal bronze(Cu-9Ni-6Sn)alloys.Morphological analysis was conducted by optical microscopy,transmission electron microscopy(TEM),and X-ray diffraction technique(XRD)on bronze and spinodal bronze samples immersed in the three different quenching media to understand the grain size and hardness values better.Tribological analysis was performed to analyze the effect of quenching media on the wear aspects of bronze and spinodal bronze samples.The hardness value of the brine-aged spinodal bronze samples was as high as 320 Hv,and the grain size was very low in the range of 60μm.A quantitative comparison between brine-aged regular bronze and brine-aged spinodal bronze showed that the hardness(Hv)was almost 80%higher for brine-aged spinodal bronze.Further,the grain size was approximately 30%finer for spinodal bronze when compared with regular bronze.When the load was increased in spinodal bronze samples,there was an initial dip in wear rate followed by a marginal increase.There was a steady increase in friction coefficient with a rise in load for brine-aged regular bronze and spinodal bronze samples.These results indicate that brine solution is the most effective quenching medium for cast Cu-Ni-Sn spinodal alloys.
文摘he solutionfluorescence quenching mechanisms of poly(methylcyclohexylsilane),poly(methylphenethylsilane), poly(methylcyclohexylsilanecomethylphenethylsilane) and poly(methylphenylsilane) are studied by means of steadystate fluorescence,timeresolved fluorescence and UV absorption. The results show that the fluorescence quenching for polysilanes by carbon tetrachloride is the static quenching with energy migration, which is also supported by the qualitative results of the fluorescence quenching behaviors of polysilane by nitromethane (CH3NO2) and 2, 4, 7trinitrofluorenone(TNF).
基金Supported by the National Key Research and Development Program(2018YFD1000903)。
文摘To understand the response characteristics of soybean seedling resistance systems to high-temperature stress,the spring soybean varieties HN44 and HN65 were selected in this study as the experimental materials,as they had substantial differences in stress resistance.Soybean physiological status was studied under high-temperature stress.Sand culture was used in the experiment,and soybeans at the seedling stage were treated with high-temperature stress.The results showed that the activity of antioxidases and osmotic regulatory substance contents in soybean increased under high-temperature treatment for a certain period of time,the activity of antioxidases and osmotic regulatory substance contents decreased after continuous treatment,and high temperatures continuously increased malondialdehyde contents in the two varieties.At high temperatures,the antioxidant activity and osmotic regulator contents of HN44 were higher than those of HN65,and the malondialdehyde contents of HN44 were higher than those of HN65.The above results showed that HN44 soybeans exhibited significantly higher resistance to high-temperature stress than HN65 variety.
文摘In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.
基金National Natural Science Foundation of China(41373111)
文摘P-arsanilic acid(p-ASA),as a kind of organoarsenic feed additive,has been widely used in poultry and swine breeding.However,it has caused the arsenic pollution around the farm.Currently data shows humic acid(HA)is closely to the migration and transformation of p-ASA.Therefore,the interaction between p-ASA and HA was investigated by using the method of fluorescence quenching titration.The association constant changed from2.74 to 4.88 L·mol-1at a p H varying from 5 to 9 and reached the maximum at p H 7.In addition,log K varied from4.15 to 5.02 L·mol-1when the temperature increased from 15℃to 35℃.The log K increased with an increase in the concentration of HA.The dominant mechanism between p-ASA and HA is static quenching.The primary interaction force was likely the hydrogen bond,and the binding behavior occurred on the As-O stretch of p-ASA and the carboxylic acid C=O stretch of HA.The results showed that dissolved organic matters could affect the fate and biogeochemical cycling of organoarsenic pharmaceuticals in aquatic ecosystems.
基金Project(50604018) supported by the National Natural Science Foundation of China
文摘A technique of combination of vacuum firing and water quenching was applied to the synthesis of LiFePO4 powder. The sample was prepared by heating the pre-decomposed precursor mixtures sealed in vacuum quartz-tube, followed by water quenching at the sintering temperature. The synthetic conditions were optimized by orthogonal experiment. The results indicate that the fast quenching treatment can avoid the overgrowth of single crystal and improve its availability ratio of active material. The sintering temperature has the greatest effect on the electrochemical performance of sample. Next is the molar ratio of Li to Fe and the sintering time, respectively. The samples prepared in the optimized technical condition has the highest reversible discharge specific capacity of 149.8 mA·h/g.
文摘Eu^(2+)-doped Na_(3)Sc_(2)(PO_(4))_(3)ionic conductor possesses superior thermal quenching(TQ)resistance,which is considered as a promising phosphor for high-power lighting applications.Yet the underlying mechanism of negative thermal quenching(NTQ)is not fully understood.In this study,we focus on upconversion(UC)and downshifting(DS)luminescence of Yb^(3+)/Er^(3+)with f-f transition rather than susceptible d-f transition of Eu^(2+)in Na_(3)Sc_(2)(PO_(4))_(3),aiming to get a more insightful view.The results show that thermally accelerated dynamic defects/ions contributes to the significant negative thermal quenching(NTQ)of UC luminescence and thermally stabilized DS luminescence by promoting the radiative transition and suppressing the non-radiative transition.The UC process with slow population rate is more susceptible to perturbation of Na+migration process with time scale equivalent to that of the former,resulting in evident NTQ of UC luminescence.This research opens an avenue for understanding the NTQ mechanism of luminescence via dynamic defects/ions.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金Project(AA17202007) supported by the Special Funding for Innovation-Driven Development of Guangxi Province,China。
文摘The influence of pre-stretching on quench sensitive effect of high strength Al-Zn-Mg-Cu-Zr alloy AA 7085 sheet was investigated by tensile testing at room temperature,transmission electron microscopy(TEM)and differential scanning calorimetry(DSC).The water-cooled and aged alloy exhibits higher strength than the air-cooled and aged alloy;2.5%pre-stretching of tensile deformation exerts little effect on strength of water-cooled and aged alloy but increases that of air-cooled and aged one,and therefore the yield strength reduction rate due to slow quenching decreases from about 3.8%to about 1.0%,reducing quench sensitive effect.For the air-cooled alloy,pre-stretching increases the sizes ofη'strengthening precipitates but also increases their quantity and the ratio of diameter to thickness,resulting in enhanced strengthening and higher strength after aging.The reason has been discussed based on microstructure examination by TEM and DSC.