This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion w...This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.展开更多
With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance c...With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.展开更多
When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the ...When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.展开更多
To study a new shaped charge of perforator, the jet formation and penetration processes in concrete targets are simulated numerically by using LS-DYNA finite element analysis software. The results show that the cylind...To study a new shaped charge of perforator, the jet formation and penetration processes in concrete targets are simulated numerically by using LS-DYNA finite element analysis software. The results show that the cylindrical liner can form jet and most materials on top of liner form the tip of jet, while the others form the tail of jet. The jet has a better continuity, and the ratio of cumulative jet length to the liner diameter can reach to 7.56. Furthermore, the ratio of bore diameter to the liner diameter is from 0.36 and 1, and the ratio of penetration depth to the liner diameter can be up to 5.5.展开更多
The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is ...The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is influenced by the design of the perforation charge and the strength characteristics of the rock material.However,as a crucial objective function for optimizing perforating charge structures,jet velocity lacks a rapid and accurate calculating method.This article addresses this issue by proposing an improved collapse velocity model using the DP46RDX42-Y perforating charge as a case study.It presents a novel approach for calculating jet velocity based on the unsteady Pugh-Eichelberger-Rostoker(PER)theory.To validate the effectiveness of the proposed method and analyze the impact of different characteristic parameters on jet tip velocity,a series of numerical simulations were conducted using LS-DYNA software combined with Arbitrary Lagrange-Euler(ALE)techniques.Results indicate excellent agreement between the proposed method and the numerical results,demonstrating its superiority over the traditional Gurney formula with an impressive 34.15%increase in accuracy.Notably,this method is particularly suitable for perforating charges with low detonation velocity.Increasing the liner density and decreasing the liner thickness and cone angle is recommended to achieve higher jet tip velocity.Furthermore,the proposed method has the potential for broader application in other perforating charges with varying liner shapes.This study provides a comprehensive and efficient solution for calculating jet velocity,which facilitates optimizing perforating charge structures and calculating penetration depth.展开更多
In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advan...In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advances in technologies and developments of well completion and stimulation with hydrajet are reviewed in this paper. Experiments were conducted to study the characteristics of abrasive water jetting and to optimize jet parameters, which can provide methods for the well completion and hydrajet fracturing. Deep-penetrating hydrajet perforating can create a 2-3 m clean hole with a diameter of 20-35 mm. Multilayer hydrajet fracturing is a process whereby multiple layers are stimulated in a single run without using mechanical packers, thereby reducing operation procedure and risk. Multilateral radial wells can be drilled using hydraulic jetting up to 100 m in length. The technique to remove sand particles and plugs with rotating self-resonating cavitating water jets in horizontal wellbores has been developed and oilfield-tested, which shows promising, cost effective prospects.展开更多
基金Supported by the National Natural Science Foundation of China(51974332).
文摘This study conducted temporary plugging and diversion fracturing(TPDF)experiments using a true triaxial fracturing simulation system within a laboratory setting that replicated a lab-based horizontal well completion with multi-cluster sand jetting perforation.The effects of temporary plugging agent(TPA)particle size,TPA concentration,single-cluster perforation number and cluster number on plugging pressure,multi-fracture diversion pattern and distribution of TPAs were investigated.A combination of TPAs with small particle sizes within the fracture and large particle sizes within the segment is conducive to increasing the plugging pressure and promoting the diversion of multi-fractures.The addition of fibers can quickly achieve ultra-high pressure,but it may lead to longitudinal fractures extending along the wellbore.The temporary plugging peak pressure increases with an increase in the concentration of the TPA,reaching a peak at a certain concentration,and further increases do not significantly improve the temporary plugging peak pressure.The breaking pressure and temporary plugging peak pressure show a decreasing trend with an increase in single-cluster perforation number.A lower number of single-cluster perforations is beneficial for increasing the breaking pressure and temporary plugging peak pressure,and it has a more significant control on the propagation of multi-cluster fractures.A lower number of clusters is not conducive to increasing the total number and complexity of artificial fractures,while a higher number of clusters makes it difficult to achieve effective plugging.The TPAs within the fracture is mainly concentrated in the complex fracture areas,especially at the intersections of fractures.Meanwhile,the TPAs within the segment are primarily distributed near the perforation cluster apertures which initiated complex fractures.
基金supported by the National Natural Science Foundation of China (51438003,51878507)
文摘With the development of two-stage munitions(a precursor shaped charge(SC)and a following kinetic energy projectile)to attack the hard concrete targets,as well as the increasing applications of ultra-high performance concrete(UHPC)in both civil and military protective structures,a comparative study on the impact performance of SC formed jet on UHPC target is performed experimentally and numerically at present.Firstly,a series of jet penetration/perforation test on the UHPC,45# steel and UHPC/45# steel composite targets are conducted.By assessing the penetration depth and borehole(crater and tunnel)diameter,the influences of target material and configuration as well as the standoff distance of SC on the impact performance of jet are experimentally discussed.Then,by adopting the 2 D multi-material Arbitrary Lagrange-Euler(ALE)algorithm,Fluid-Structure Interaction(FSI)method and erosion algorithm implemented in the finite element code LS-DYNA,the formation and impact performance of jet in the present test are well reproduced.Finally,based on the validated numerical algorithms,constitutive models and the corresponding parameters,the influences of target material(UHPC,NSC and 45# steel),standoff distance,target configuration(stacked and spaced)and weight efficiency on the impact performance of jet are further discussed.The derived conclusions could provide helpful references for evaluating the ballistic performance of jet and designing the protective structures.
文摘When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.
文摘To study a new shaped charge of perforator, the jet formation and penetration processes in concrete targets are simulated numerically by using LS-DYNA finite element analysis software. The results show that the cylindrical liner can form jet and most materials on top of liner form the tip of jet, while the others form the tail of jet. The jet has a better continuity, and the ratio of cumulative jet length to the liner diameter can reach to 7.56. Furthermore, the ratio of bore diameter to the liner diameter is from 0.36 and 1, and the ratio of penetration depth to the liner diameter can be up to 5.5.
基金supported by the National Key R&D Program of China(2020YFA0711802)。
文摘The application of perforating completion technology in oil and gas field development has gained widespread popularity.Enhancing the efficiency of oil and gas wells relies on increasing the penetration depth,which is influenced by the design of the perforation charge and the strength characteristics of the rock material.However,as a crucial objective function for optimizing perforating charge structures,jet velocity lacks a rapid and accurate calculating method.This article addresses this issue by proposing an improved collapse velocity model using the DP46RDX42-Y perforating charge as a case study.It presents a novel approach for calculating jet velocity based on the unsteady Pugh-Eichelberger-Rostoker(PER)theory.To validate the effectiveness of the proposed method and analyze the impact of different characteristic parameters on jet tip velocity,a series of numerical simulations were conducted using LS-DYNA software combined with Arbitrary Lagrange-Euler(ALE)techniques.Results indicate excellent agreement between the proposed method and the numerical results,demonstrating its superiority over the traditional Gurney formula with an impressive 34.15%increase in accuracy.Notably,this method is particularly suitable for perforating charges with low detonation velocity.Increasing the liner density and decreasing the liner thickness and cone angle is recommended to achieve higher jet tip velocity.Furthermore,the proposed method has the potential for broader application in other perforating charges with varying liner shapes.This study provides a comprehensive and efficient solution for calculating jet velocity,which facilitates optimizing perforating charge structures and calculating penetration depth.
基金The authors express their appreciation to the National Natural Science Foundation of China (No.50774089)the High-tech Research and Development Program of China (No.2007AA09Z315) for the fi nancial support of this work
文摘In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advances in technologies and developments of well completion and stimulation with hydrajet are reviewed in this paper. Experiments were conducted to study the characteristics of abrasive water jetting and to optimize jet parameters, which can provide methods for the well completion and hydrajet fracturing. Deep-penetrating hydrajet perforating can create a 2-3 m clean hole with a diameter of 20-35 mm. Multilayer hydrajet fracturing is a process whereby multiple layers are stimulated in a single run without using mechanical packers, thereby reducing operation procedure and risk. Multilateral radial wells can be drilled using hydraulic jetting up to 100 m in length. The technique to remove sand particles and plugs with rotating self-resonating cavitating water jets in horizontal wellbores has been developed and oilfield-tested, which shows promising, cost effective prospects.