In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dyn...In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.展开更多
The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elem...The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.展开更多
Along with development of new design and machining me thod production with more complex surface can be manufactured. Researching on th e new equipment used for surface disposal has become the important matter. Grind i...Along with development of new design and machining me thod production with more complex surface can be manufactured. Researching on th e new equipment used for surface disposal has become the important matter. Grind ing and polishing are a common surface processing method. A new type wire driven parallel robot used for grinding processing is proposed in this paper. Wire driven parallel robot is developed from parallel robot and serial wire driven r obot. Steel wire is used to replace the leg of parallel robot. Compared with par allel robot, this kind of robot has lager workspace, lower weight, higher rigidi ty and higher load/deadweight ratio. And the stiffness of robot is controlled by changing the tension of wire. The robot proposed in this paper has three DOF. T he moving part is driven by four wires, three of them are used to drive and the rest to keep them tension, with a restraining machine. The position sensors are installed in restraining machine. The position of terminating of end-effecter c an be ascertained in the space. The tension sensors are installed in each wire t o form force feedback system. By changing the tension the force on the workpiece can be controlled. Also the stiffness of robot can be adjusted.展开更多
基金Project(51005138) supported by the National Natural Science Foundation of ChinaProject(BS2012ZZ008) supported by Shandong Young Scientists Award Fund,China+2 种基金Project(J09LD54) supported by the Natural Science Foundation of Shandong Education Department of ChinaProject(2011KYJQ102) supported by the Science Foundation of Shandong University of Science and Technology,ChinaProject(HGDML-1104) supported by Jiangsu Key Laboratory of Digital Manufacturing Technology,China
文摘In order to grasp the dynamic behaviors of 4-UPS-UPU high-speed spatial parallel mechanism, the stress of driving limbs and natural frequencies of parallel mechanism were investigated. Based on flexible multi-body dynamics theory, the dynamics model of 4-UPS-UPU high-speed spatial parallel mechanism without considering geometric nonlinearity was derived. The stress of driving limbs and natural frequencies of 4-UPS-UPU parallel mechanism with specific parameters were analyzed. The relationship between the basic parameters of parallel mechanism and its dynamic behaviors, such as stress of driving limbs and natural frequencies of parallel mechanism, were discussed. The numerical simulation results show that the stress and natural frequencies are relatively sensitive to the section parameters of driving limbs, the characteristic parameters of material on driving limbs, and the mass of moving platform. The researches can provide important theoretical base of the analysis of dynamic behaviors and optimal design for high-speed spatial parallel mechanism.
基金Projects(50875002, 60705036) supported by the National Natural Science Foundation of ChinaProject(3062004) supported by Beijing Natural Science Foundation, China+1 种基金Project(20070104) supported by the Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of SciencesProject(2009AA04Z415) supported by the National High-Tech Research and Development Program of China
文摘The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.
文摘Along with development of new design and machining me thod production with more complex surface can be manufactured. Researching on th e new equipment used for surface disposal has become the important matter. Grind ing and polishing are a common surface processing method. A new type wire driven parallel robot used for grinding processing is proposed in this paper. Wire driven parallel robot is developed from parallel robot and serial wire driven r obot. Steel wire is used to replace the leg of parallel robot. Compared with par allel robot, this kind of robot has lager workspace, lower weight, higher rigidi ty and higher load/deadweight ratio. And the stiffness of robot is controlled by changing the tension of wire. The robot proposed in this paper has three DOF. T he moving part is driven by four wires, three of them are used to drive and the rest to keep them tension, with a restraining machine. The position sensors are installed in restraining machine. The position of terminating of end-effecter c an be ascertained in the space. The tension sensors are installed in each wire t o form force feedback system. By changing the tension the force on the workpiece can be controlled. Also the stiffness of robot can be adjusted.