期刊文献+
共找到1,135篇文章
< 1 2 57 >
每页显示 20 50 100
Data processing of small samples based on grey distance information approach 被引量:14
1
作者 Ke Hongfa, Chen Yongguang & Liu Yi 1. Coll. of Electronic Science and Engineering, National Univ. of Defense Technology, Changsha 410073, P. R. China 2. Unit 63880, Luoyang 471003, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期281-289,共9页
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di... Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective. 展开更多
关键词 Data processing Grey theory Norm theory small samples Uncertainty assessments Grey distance measure Information whitening ratio.
在线阅读 下载PDF
Small sample Bayesian analyses in assessment of weapon performance 被引量:6
2
作者 Li Qingmin Wang Hongwei Liu Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期545-550,共6页
Abundant test data are required in assessment of weapon performance. When weapon test data are insufficient, Bayesian analyses in small sample circumstance should be considered and the test data should be provided by ... Abundant test data are required in assessment of weapon performance. When weapon test data are insufficient, Bayesian analyses in small sample circumstance should be considered and the test data should be provided by simulations. The several Bayesian approaches are discussed and some limitations are founded. An improvement is put forward after limitations of Bayesian approaches available are analyzed and the improved approach is applied to assessment of some new weapon performance. 展开更多
关键词 Bayesian approach small sample confidence.
在线阅读 下载PDF
Gabor-CNN for object detection based on small samples 被引量:5
3
作者 Xiao-dong Hu Xin-qing Wang +5 位作者 Fan-jie Meng Xia Hua Yu-ji Yan Yu-yang Li Jing Huang Xun-lin Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1116-1129,共14页
Object detection models based on convolutional neural networks(CNN)have achieved state-of-the-art performance by heavily rely on large-scale training samples.They are insufficient when used in specific applications,su... Object detection models based on convolutional neural networks(CNN)have achieved state-of-the-art performance by heavily rely on large-scale training samples.They are insufficient when used in specific applications,such as the detection of military objects,as in these instances,a large number of samples is hard to obtain.In order to solve this problem,this paper proposes the use of Gabor-CNN for object detection based on a small number of samples.First of all,a feature extraction convolution kernel library composed of multi-shape Gabor and color Gabor is constructed,and the optimal Gabor convolution kernel group is obtained by means of training and screening,which is convolved with the input image to obtain feature information of objects with strong auxiliary function.Then,the k-means clustering algorithm is adopted to construct several different sizes of anchor boxes,which improves the quality of the regional proposals.We call this regional proposal process the Gabor-assisted Region Proposal Network(Gabor-assisted RPN).Finally,the Deeply-Utilized Feature Pyramid Network(DU-FPN)method is proposed to strengthen the feature expression of objects in the image.A bottom-up and a topdown feature pyramid is constructed in ResNet-50 and feature information of objects is deeply utilized through the transverse connection and integration of features at various scales.Experimental results show that the method proposed in this paper achieves better results than the state-of-art contrast models on data sets with small samples in terms of accuracy and recall rate,and thus has a strong application prospect. 展开更多
关键词 Deep learning Convolutional neural network small samples Gabor convolution kernel Feature pyramid
在线阅读 下载PDF
Research on aiming methods for small sample size shooting tests of two-dimensional trajectory correction fuse 被引量:1
4
作者 Chen Liang Qiang Shen +4 位作者 Zilong Deng Hongyun Li Wenyang Pu Lingyun Tian Ziyang Lin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期506-517,共12页
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ... The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future. 展开更多
关键词 Two-dimensional trajectory correction fuse small sample size test Compatibility test KL divergence Fusion bayesian estimation
在线阅读 下载PDF
Analysis method on shoot precision of weapon in small-sample case
5
作者 Jiang Jun Song Baowei Liang Qingwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期781-784,共4页
Because of limits of cost, in general, the test data of weapons are shortness. It is always an important topic that to gain scientific results of weapon performance analyses in small-sample case. Based on the analysis... Because of limits of cost, in general, the test data of weapons are shortness. It is always an important topic that to gain scientific results of weapon performance analyses in small-sample case. Based on the analysis of distribution function characteristics and grey mathematics, a weighting grey method in small-sample case is presented. According to the analysis of test data of a weapon, it is proved that the method is a good method to deal with data in the small-sample case and has a high value in the analysis of weapon performance. 展开更多
关键词 WEAPON small-sample shoot precision statistical characters
在线阅读 下载PDF
A New Approach to Robust Stability Analysis of Sampled-data Control Systems 被引量:6
6
作者 WANGGuang-Xiong LIUYan-Wen HEZhen WANGYong-Li 《自动化学报》 EI CSCD 北大核心 2005年第4期510-515,共6页
The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is ... The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is generally conservative under the small gain condition. The reason forthe norm di?erence by the lifting is that the state transition operator in the lifted system is zero inthis case. A new approach to the robust stability analysis is proposed. It is to use an equivalentdiscrete-time uncertainty to replace the continuous-time uncertainty. Then the general discretizedmethod can be used for the robust stability problem, and it is not conservative. Examples are givenin the paper. 展开更多
关键词 采样数据系统 稳定性 获得理论 自动控制
在线阅读 下载PDF
基于卷积神经网络的农作物病害检测研究综述 被引量:2
7
作者 乔世成 党珊珊 +3 位作者 何海祝 关强 王郝日钦 路扬 《山西农业大学学报(自然科学版)》 北大核心 2025年第2期113-127,共15页
我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对... 我国是农业大国,拥有广大的农作物种植面积和丰富的农业资源。然而,近年来,农作物病害问题日益严重。农作物病害不仅直接影响产量和质量,还会造成农民的经济损失,威胁粮食安全和生态环境,对我国农业可持续发展构成了巨大威胁。因此,对农作物病害的精准检测是提高我国农业发展的关键因素。随着深度学习的不断发展,无损检测技术已得到广泛应用,利用卷积神经网络进行农作物病害的精准检测成为近年来研究的热点。卷积神经网络具有较好的图像检测与识别能力,能够适应多种病害类型,实现高效、准确的大规模检测,被广泛应用于农作物病害的精准检测中。本文首先介绍了卷积神经网络结构;然后探讨了几种典型的检测农作物病害的卷积神经网络模型;其次分析了其它神经网络研究情况并进行总结;重点讨论了目前基于小样本学习、小目标检测、网络轻量化改进的卷积神经网络热点研究问题;之后对未来农作物病害检测所面临的挑战和展望进行了总结,如针对数据集标注困难、模型缺乏泛化能力、小样本小目标数据集识别精度较低等问题,提出了建立更高质量的农作物病害数据集、优化小样本小目标数据集下的网络模型结构以及对农作物病害无损检测进行实时监测与预警等研究展望,以期为不断推进农业技术创新和应用、为我国农作物病害的精准检测研究提供参考依据。 展开更多
关键词 卷积神经网络 小样本 小目标 轻量化
在线阅读 下载PDF
基于VAE-WGAN的矿井提升机主轴承小样本故障诊断方法 被引量:1
8
作者 江帆 宋泓炎 +2 位作者 沈熙 朱真才 程舒曼 《煤炭科学技术》 北大核心 2025年第S1期468-482,共15页
作为提升机的关键组件,主轴承在长时间高速重载服役过程中,其性能会发生退化并导致故障产生,故开展提升机主轴承故障诊断对保障矿井提升机安全高效运行具有重要意义。然而,矿井提升机运行状态监测的数据中正常服役与故障状态的比重严重... 作为提升机的关键组件,主轴承在长时间高速重载服役过程中,其性能会发生退化并导致故障产生,故开展提升机主轴承故障诊断对保障矿井提升机安全高效运行具有重要意义。然而,矿井提升机运行状态监测的数据中正常服役与故障状态的比重严重失调,呈现出正常样本多、故障样本少、标签样本不足等特点,导致矿井提升机主轴承故障模型训练效果不理想、诊断准确度低。针对小样本下矿井提升机主轴承故障诊断准确率低的问题,通过融合变分自编码器和Wasserstein生成对抗网络,构建基于VAE-WGAN的矿井提升机主轴承样本增广模型,进而提出基于CBAM-MoblieNetV2的故障诊断方法,实现小样本数据下的矿井提升机主轴承故障诊断。在算法层面上,引入Wasserstein距离度量,解决生成对抗网络训练梯度消失问题。在数据层面上,使用凯斯西储大学数据集对VAE-WGAN进行测试,并通过量化指标评价VAE-WGAN生成能力的方式优选超参数,再用矿井提升机模拟实验台轴承数据集训练VAE-WGAN,实现小样本数据集增广扩容。为了提升故障诊断模型的特征提取能力和故障诊断准确率,在轻量化卷积神经网络MobileNetV2的基础上,将卷积块注意力机制CBAM融合到MobileNetV2深层特征映射,搭建注意力机制卷积分类网络CBAMMobileNetV2,通过融合跨通道信息和空间信息实现更多地关注故障特征。最后与WGAN_GP、DCGAN,VAE以及WGAN等传统生成模型进行了对比分析,VAE-WGAN+CBAM-MobileNetV2在4种小样本比例数据集上的准确率均高于其他4种方法,证明了所提样本增广和故障诊断方法在不同小样本比例故障数据集上的故障诊断准确率更高,能够满足小样本下的故障诊断要求。 展开更多
关键词 生成对抗网络 小样本 矿井提升机 主轴承 故障诊断
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法 被引量:2
9
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
基于改进ACGAN算法的带钢小样本数据增强方法 被引量:2
10
作者 师红宇 王嘉鑫 李怡 《计算机集成制造系统》 北大核心 2025年第1期211-218,共8页
为了解决带钢小样本数据集在深度学习中出现的模式崩溃、图像模糊和错判等问题,提出一种改进的ACGAN数据增强方法。首先,模型中引入带梯度惩罚项的Wasserstein距离作为损失函数,解决了模式崩溃和训练不稳定问题;其次,生成器网络中改进... 为了解决带钢小样本数据集在深度学习中出现的模式崩溃、图像模糊和错判等问题,提出一种改进的ACGAN数据增强方法。首先,模型中引入带梯度惩罚项的Wasserstein距离作为损失函数,解决了模式崩溃和训练不稳定问题;其次,生成器网络中改进标签反卷积网络,使标签信息更好地贯穿整个生成网络,并在其末端设计了去噪结构,提高了生成图像质量;接着,判别器网络中引入级联融合思想,增强了网络判别能力;最后,将改进前后的模型在NEU带钢表面缺陷数据集和MNIST数据集上进行对比实验,结果表明:所提模型生成各类样本图像的清晰度、准确性明显提高,并且客观指标FID的平均值在NEU带钢表面缺陷数据集上下降了15.8%,在MNIST数据集下降了73%,为带钢小样本数据集的扩充提供了一种新方法。 展开更多
关键词 图像生成 生成对抗网络 数据增强 小样本
在线阅读 下载PDF
基于DCGAN-CNN的小样本通信干扰信号识别 被引量:1
11
作者 李程 陈明虎 +2 位作者 施育鑫 张宁松 胡凯 《无线电通信技术》 北大核心 2025年第1期70-79,共10页
在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号... 在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号识别方法。该方法利用DCGAN的生成对抗特性来扩充小样本通信干扰信号时的频图数据集,将真实样本与生成样本混合后,输入到CNN中进行训练识别,在DCGAN和CNN中引入学习率调度器,帮助模型更好地收敛。仿真结果表明,所提方法可有效提高小样本情况下通信干扰信号的识别率。 展开更多
关键词 通信抗干扰 通信干扰信号识别 小样本学习 深度卷积生成对抗网络-卷积神经网络
在线阅读 下载PDF
小样本下基于DWT和2D-CNN的齿轮故障诊断方法 被引量:1
12
作者 宋庭新 黄继承 +2 位作者 刘尚奇 杜敏 李子平 《计算机集成制造系统》 北大核心 2025年第6期2206-2214,共9页
针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。... 针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。为了充分获取小样本中的信息来训练神经网络,利用离散小波分解、图像变换和Markov变迁场方法对样本信号进行增量和转换。通过验证齿轮箱数据集得到96%的训练准确率和87.5%的分类准确率,同时通过消融实验和对比实验证明,该方法可以有效克服小样本数据中的噪声干扰,使数据得到增强,在齿轮故障识别中具有很好的现实意义。 展开更多
关键词 故障诊断 小样本 二维卷积神经网络 小波变换
在线阅读 下载PDF
某重型数控镗铣床主轴进给传动子系统小样本故障数据下的可靠性评估 被引量:1
13
作者 陈红霞 王凡 +2 位作者 王纪华 任杰 谢遂心 《机床与液压》 北大核心 2025年第13期173-180,共8页
针对某重型数控镗铣床主轴进给传动子系统小样本故障数据下的可靠性评估问题,采用同类型机床故障数据,作为贝叶斯分析中的先验数据,结合实际收集到的进给传动子系统小样本故障数据,应用Bootstrap-Bayes方法,进行Bootstrap再抽样,得到分... 针对某重型数控镗铣床主轴进给传动子系统小样本故障数据下的可靠性评估问题,采用同类型机床故障数据,作为贝叶斯分析中的先验数据,结合实际收集到的进给传动子系统小样本故障数据,应用Bootstrap-Bayes方法,进行Bootstrap再抽样,得到分布函数参数的置信区间,以此作为贝叶斯方法的先验信息。在此基础上,利用k-means聚类分析方法对Bootstrap法扩充后的数据进行聚合筛选,改进后尺度参数置信区间和形状参数置信区间的长度大幅缩短。之后利用WINBUGS软件进行后验求解,得出进给传动子系统的平均故障间隔时间(MTBF),其结果更加接近实际MTBF,有效提高了可靠性评估结果的精度。 展开更多
关键词 进给传动子系统 小样本故障数据 可靠性评估 Bootstrap-Bayes k-means聚类分析
在线阅读 下载PDF
X射线荧光光谱在地质分析中的若干难点及应用现状
14
作者 袁静 李迎春 +3 位作者 谭桂丽 黄海波 张华 刘娇 《岩矿测试》 北大核心 2025年第2期161-173,共13页
X射线荧光光谱法(XRF)具有无损、快速、环保和分析精度高等特点,常作为地质样品中主量和微量元素分析的首选方法。然而,由于地质样品的矿物组成、物理结构特征(如尺寸、形状和分层等)和化学成分(如元素组成、化学形态等)的复杂性与多样... X射线荧光光谱法(XRF)具有无损、快速、环保和分析精度高等特点,常作为地质样品中主量和微量元素分析的首选方法。然而,由于地质样品的矿物组成、物理结构特征(如尺寸、形状和分层等)和化学成分(如元素组成、化学形态等)的复杂性与多样性,XRF在地质样品分析的实际应用中存在一些技术难点。本文从小样品量和珍贵样品的分析、XRF的散射效应的应用、易挥发元素分析、变价元素分析和稀有金属分析等方面,对XRF在地质分析中的难点进行了总结与评述。指出制备易于保存和便于反复测量的小尺寸样片是小样品量和珍贵样品XRF分析的合适方法;XRF散射效应可用于成分未知的样品中更多化学成分信息的获取以及异质性样品原位分析误差的校正;超细粉末制样、稳定剂的加入和标准加入法建立工作曲线是解决易挥发元素XRF分析困难的方法。认为元素的特征X射线相对强度可用于变价元素价态和形态的分析;优化校准曲线、降低熔融制样的稀释比、高压激发和改善谱线重叠干扰是解决稀有金属分析困难的有效途径。 展开更多
关键词 X射线荧光光谱 小样品量和珍贵样品 散射效应 易挥发元素 变价元素 稀有金属
在线阅读 下载PDF
小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法 被引量:1
15
作者 雷春丽 焦孟萱 +2 位作者 薛林林 张护强 史佳硕 《计算机集成制造系统》 北大核心 2025年第1期278-289,共12页
针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有... 针对滚动轴承在不同工况条件下样本分布不同以及故障样本数量不足导致故障诊断精度低、泛化性能差的问题,提出一种小样本下基于MTF与SSCAM-MSCNN的滚动轴承变工况故障诊断方法。首先,运用马尔科夫转移场(MTF)将一维振动信号转化为具有时间相关性的二维特征图。其次,提出条纹自校正注意力机制(SSCAM),它不仅可以加强模型在长距离方向上的特征提取能力,还能建立通道间依赖关系,可以对全局有效信息进行捕捉。然后,将SSCAM引入到多尺度神经网络(MSCNN)中,构建出SSCAM-MSCNN模型。最后,将MTF二维特征图输入到所提模型中进行训练,采用优化后的网络模型进行测试并输出分类结果。通过美国凯斯西储大学以及本实验室MFS滚动轴承数据集对所提方法进行验证,同时对后者进行加噪处理,与其他故障诊断模型进行对比。试验结果表明,所提方法在小样本、变工况条件下具有更高的识别精度、更强的泛化性能与抗噪性能。 展开更多
关键词 滚动轴承 马尔科夫转移场 卷积神经网络 条纹自校正注意力机制 小样本 故障诊断
在线阅读 下载PDF
飞机机翼表面金属腐蚀识别方法研究进展
16
作者 杨泽青 许康妮 +4 位作者 吴江鹏 赵丽滨 胡宁 王成波 闫雨哲 《计算机集成制造系统》 北大核心 2025年第6期1937-1960,共24页
针对高温、高湿、高盐雾等严苛腐蚀环境下飞机机翼及机体结构腐蚀频发,快速、准确地识别腐蚀,并采取相应的修复与维护措施,对保障飞机飞行安全、延长使用寿命及缩短停机维修时间具有重要意义。分析了飞机机翼表面金属腐蚀的特性,列举了... 针对高温、高湿、高盐雾等严苛腐蚀环境下飞机机翼及机体结构腐蚀频发,快速、准确地识别腐蚀,并采取相应的修复与维护措施,对保障飞机飞行安全、延长使用寿命及缩短停机维修时间具有重要意义。分析了飞机机翼表面金属腐蚀的特性,列举了典型的腐蚀部位及类型。通过对国内外相关技术文献的调研与分析,重点探讨了基于视觉检测与识别的飞机机翼表面金属腐蚀识别方法,从传统图像处理、机器学习和深度学习3个方面综述了研究现状。特别关注了基于深度学习的腐蚀识别方法,分析了YOLO,DETR等方法的识别原理与应用场景。针对飞机机翼表面金属腐蚀数据集数量不足所导致的模型训练效果不佳的问题,探讨了基于数据增强和迁移学习的样本扩充方法,梳理了相关数据集及腐蚀识别性能评价指标。最后,总结了飞机机翼表面金属腐蚀识别的关键问题及其解决方案,并对未来研究方向与发展趋势进行了展望与预测。 展开更多
关键词 飞机机翼 腐蚀识别 深度学习 小样本 迁移学习
在线阅读 下载PDF
基于深度元学习的工控系统异常检测方法
17
作者 李新春 谭新欢 +1 位作者 李琳 许驰 《计算机科学与探索》 北大核心 2025年第8期2251-2260,共10页
工控系统在不断网络化的过程中,正面临着层出不穷的新型网络攻击,导致传统异常检测方法因样本数量有限、泛化能力不足而造成检测精度低的问题。为此,采用模型无关的元学习(MAML)架构,提出基于卷积神经网络的深度元学习(D-MAML)异常检测... 工控系统在不断网络化的过程中,正面临着层出不穷的新型网络攻击,导致传统异常检测方法因样本数量有限、泛化能力不足而造成检测精度低的问题。为此,采用模型无关的元学习(MAML)架构,提出基于卷积神经网络的深度元学习(D-MAML)异常检测方法。构建D-MAML的内、外双循环异常检测架构。其中,内循环提取样本特征,外循环动态更新参数,以提高模型泛化能力,满足少样本检测需求。设计元模块增强的卷积神经网络,并基于梯度下降法更新内循环模型参数,提高特征提取能力。提出基于多步损失函数的外循环模型参数更新算法,提高算法稳定性。采用余弦退火算法动态更新外循环学习率,解决算法泛化能力不足问题。基于三个公开的数据集对DMAML进行了5分类实验验证。结果表明,D-MAML的单样本最佳准确率为67.17%,多样本最佳准确率可进一步提升到92.84%。 展开更多
关键词 工控系统 异常检测 少样本 模型无关的元学习(MAML)
在线阅读 下载PDF
基于循环微调训练的柴油机故障迁移学习诊断
18
作者 林杰威 张益铭 +3 位作者 朱小龙 王辉 勾焮 张俊红 《振动.测试与诊断》 北大核心 2025年第4期682-689,841,共9页
针对当前柴油机故障诊断领域深度学习模型参数规模大、训练时间长,以及工程应用中带标签样本不足的问题,提出一种基于轻量化网络和循环微调训练的柴油机故障诊断迁移学习方法。首先,该方法采用轻量化MobileNet-V2作为主干网络,在权重迁... 针对当前柴油机故障诊断领域深度学习模型参数规模大、训练时间长,以及工程应用中带标签样本不足的问题,提出一种基于轻量化网络和循环微调训练的柴油机故障诊断迁移学习方法。首先,该方法采用轻量化MobileNet-V2作为主干网络,在权重迁移学习的基础上,提出一种部分权重循环初始化微调的方法,解决了变工况条件下的小样本诊断问题;其次,开展不同程度进气滤清器堵塞和气门间隙异常的柴油机故障台架实验;最后,采用所提方法和现有方法,对变负荷条件下的柴油机进行故障诊断对比分析。结果表明:所提方法在参数规模、计算量、诊断精度和稳定性上均优于现有方法,尤其是在小样本条件下的优势更为明显。 展开更多
关键词 迁移学习 故障诊断 时频分析 小样本 柴油机 变工况
在线阅读 下载PDF
类别不均衡的少样本工业产品表观缺陷检测
19
作者 王素琴 杜雨洁 +1 位作者 石敏 朱登明 《图学学报》 北大核心 2025年第3期568-577,共10页
通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网... 通用的目标检测网络在缺陷样本数量较少、缺陷类别分布不均衡时,总体检测精度偏低,在缺陷样本稀少的尾部类别上检测精度更低。为此,提出了一种基于改进YOLOv8s的工业产品表观缺陷检测方法。通过在Neck网络使用幻影卷积(GSConv),降低网络复杂度的同时增强网络非线性能力,以避免过拟合风险。利用聚合模块VoV-GSCSP进一步提取与融合不同层次特征,提升网络特征提取与融合能力。通过采用重加权损失函数以平衡不同类别样本的训练损失贡献,加大尾部类别样本的损失贡献占比,从而提高尾部类别缺陷的检测精度。相比基线模型,改进方法对针灸针表观缺陷检测精度mAP为93.3%,提高5.0%,样本最少的断针缺陷提升9.1%;药板表观缺陷检测精度mAP为91.4%,提高2.6%,样本最少的脏污缺陷提升3.2%。在样本较多且分布不均衡的钢材数据集上,整体缺陷检测精度mAP提高2.6%。实验表明,该改进方法在缺陷样本少且类别分布不均衡时,可有效提升工业产品表观缺陷总体检测精度,对样本稀少的尾部类别检测精度改善明显,泛化性良好。 展开更多
关键词 表观缺陷检测 少样本 类别不均衡 GSConv 重加权损失函数
在线阅读 下载PDF
改进GAN数据增强的小样本管道漏磁缺陷识别
20
作者 温江涛 闫鹏 +1 位作者 周家鑫 孙洁娣 《电子测量与仪器学报》 北大核心 2025年第6期142-153,共12页
针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳的问题,提出了一种基于改进生成对抗网络的数据增强方法。首先,该方法研究了多类别混合估计的方法为生成器提供原始信号的先... 针对复杂管道漏磁缺陷识别研究中,因实际漏磁缺陷样本数量少、差异大导致的智能识别模型在实际应用中性能不佳的问题,提出了一种基于改进生成对抗网络的数据增强方法。首先,该方法研究了多类别混合估计的方法为生成器提供原始信号的先验信息,改进生成器的随机噪声输入,同时在生成器网络中引入多头注意力机制以捕获全局关键特征,提高生成样本质量;然后,研究了基于变分自编码重构误差的样本筛选方法,从生成样本中选取质量更高的样本,用来改善识别模型的训练效率;最后,将筛选出的生成样本及原始样本组合构成缺陷样本数据集,实现了数据增强。为验证数据增强效果,实验中采用常用的分类方法对扩充后的漏磁缺陷信号进行分类识别,实验结果表明,改进的方法在样本量较小的情况下平均识别准确率可达93%,相比其他类似方法具有更好的性能。 展开更多
关键词 管道漏磁检测 小样本 生成对抗网络 多头注意力 多类别混合估计 样本筛选
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部