Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dim...Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.展开更多
The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,thi...The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.展开更多
基金supported by the National Natural Science Foundations of China(Nos.51205193,51475221)
文摘Image matching technology is theoretically significant and practically promising in the field of autonomous navigation.Addressing shortcomings of existing image matching navigation technologies,the concept of high-dimensional combined feature is presented based on sequence image matching navigation.To balance between the distribution of high-dimensional combined features and the shortcomings of the only use of geometric relations,we propose a method based on Delaunay triangulation to improve the feature,and add the regional characteristics of the features together with their geometric characteristics.Finally,k-nearest neighbor(KNN)algorithm is adopted to optimize searching process.Simulation results show that the matching can be realized at the rotation angle of-8°to 8°and the scale factor of 0.9 to 1.1,and when the image size is 160 pixel×160 pixel,the matching time is less than 0.5 s.Therefore,the proposed algorithm can substantially reduce computational complexity,improve the matching speed,and exhibit robustness to the rotation and scale changes.
基金supported by the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics (No.kfjj20191506)
文摘The scene matching navigation is a research focus in the field of autonomous navigation,but the real-time performance of image matching algorithm is difficult to meet the needs of real navigation systems.Therefore,this paper proposes a fast image matching algorithm.The algorithm improves the traditional line segment extraction algorithm and combines with the Delaunay triangulation method.By combining the geometric features of points and lines,the image feature redundancy is reduced.Then,the error with confidence criterion is analyzed and the matching process is completed.The simulation results show that the proposed algorithm can still work within 3°rotation and small scale variation.In addition,the matching time is less than 0.5 s when the image size is 256 pixel×256 pixel.The proposed algorithm is suitable for autonomous navigation systems with multiple feature distribution and higher real-time requirements.
文摘针对盾构姿态预测模型存在易过拟合、预测精度低的问题,提出一种基于融合注意力机制的盾构姿态组合预测模型。为强化有效特征的提取,抑制冗余特征信息的表达,引入基于选择性卷积核网络(selective kernel networks,SKNet)的特征注意力机制提取网络,消除固定尺寸卷积核带来的限制,并自适应形成带有注意力的特征映射。为更好地捕捉长期信息和特征模式,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)、门控循环单元(gated recurrent unit, GRU)得到2组隐含输出结果,再利用多头注意力机制,捕获组合模型输出的隐含特征与模型输出的盾构姿态之间的依赖关系,进一步提高预测模型对重要隐含特征的信息抓捕能力;同时,为解决地质勘察钻孔数据连续性差、精确性不足,难以应用于机器学习模型训练的问题,将基于人工先验知识的二级特征引入模型特征输入,提升模型对地层信息的感知能力。最后,基于广州地铁12号线官洲站—大学城北站盾构实例,对模型不同参数结构下的性能进行研究,并进行对比试验验证模型性能,采用可解释性试验评估特征对预测结果的影响。试验结果表明,相比其他预测模型,所提出的预测模型优越性更好,预测精度更高,解决了长时间序列高特征维度数据在传统模型下易过拟合且预测精度较低的问题。