期刊文献+
共找到645篇文章
< 1 2 33 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization 被引量:68
2
作者 HUANG Changqiang DONG Kangsheng +2 位作者 HUANG Hanqiao TANG Shangqin ZHANG Zhuoran 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期86-97,共12页
To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov pr... To reach a higher level of autonomy for unmanned combat aerial vehicle(UCAV) in air combat games, this paper builds an autonomous maneuver decision system. In this system,the air combat game is regarded as a Markov process, so that the air combat situation can be effectively calculated via Bayesian inference theory. According to the situation assessment result,adaptively adjusts the weights of maneuver decision factors, which makes the objective function more reasonable and ensures the superiority situation for UCAV. As the air combat game is characterized by highly dynamic and a significant amount of uncertainty,to enhance the robustness and effectiveness of maneuver decision results, fuzzy logic is used to build the functions of four maneuver decision factors. Accuracy prediction of opponent aircraft is also essential to ensure making a good decision; therefore, a prediction model of opponent aircraft is designed based on the elementary maneuver method. Finally, the moving horizon optimization strategy is used to effectively model the whole air combat maneuver decision process. Various simulations are performed on typical scenario test and close-in dogfight, the results sufficiently demonstrate the superiority of the designed maneuver decision method. 展开更多
关键词 autonomous air combat maneuver decision bayesian inference moving horizon optimization situation assessment fuzzy logic
在线阅读 下载PDF
Target distribution in cooperative combat based on Bayesian optimization algorithm 被引量:6
3
作者 Shi Zhi fu Zhang An Wang Anli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期339-342,共4页
Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can ... Target distribution in cooperative combat is a difficult and emphases. We build up the optimization model according to the rule of fire distribution. We have researched on the optimization model with BOA. The BOA can estimate the joint probability distribution of the variables with Bayesian network, and the new candidate solutions also can be generated by the joint distribution. The simulation example verified that the method could be used to solve the complex question, the operation was quickly and the solution was best. 展开更多
关键词 target distribution bayesian network bayesian optimization algorithm cooperative air combat.
在线阅读 下载PDF
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
4
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 bayesian network structure learning ant colony optimization unconstrained optimization
在线阅读 下载PDF
Multi-fidelity Bayesian algorithm for antenna optimization 被引量:2
5
作者 LI Jianxing YANG An +2 位作者 TIAN Chunming YE Le CHEN Badong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第6期1119-1126,共8页
In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one compr... In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data. 展开更多
关键词 antenna optimization bayesian optimization(BO) multiple-output Gaussian process multi-fidelity(MF) low-fidelity(LF)simulation reuse
在线阅读 下载PDF
A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization 被引量:21
6
作者 JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian 《自动化学报》 EI CSCD 北大核心 2009年第3期281-288,共8页
关键词 最优化 随机系统 自动化 BN
在线阅读 下载PDF
Prediction on compression indicators of clay soils using XGBoost with Bayesian optimization
7
作者 WU Hong-tao ZHANG Zi-long Daniel DIAS 《Journal of Central South University》 CSCD 2024年第11期3914-3929,共16页
The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consol... The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects. 展开更多
关键词 machine learning clay soils compression indicators XGBoost bayesian optimization
在线阅读 下载PDF
Intelligent evaluation of mean cutting force of conical pick by boosting trees and Bayesian optimization
8
作者 LIU Zi-da LIU Yong-ping +3 位作者 SUN Jing YANG Jia-ming YANG Bo LI Di-yuan 《Journal of Central South University》 CSCD 2024年第11期3948-3964,共17页
Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important f... Conical picks are important tools for rock mechanical excavation.Mean cutting force(MCF)of conical pick determines the suitability of the target rock for mechanical excavation.Accurate evaluation of MCF is important for pick design and rock cutting.This study proposed hybrid methods composed of boosting trees and Bayesian optimization(BO)for accurate evaluation of MCF.220 datasets including uniaxial compression strength,tensile strength,tip angle(θ),attack angle,and cutting depth,were collected.Four boosting trees were developed based on the database to predict MCF.BO optimized the hyper-parameters of these boosting trees.Model evaluation suggested that the proposed hybrid models outperformed many commonly utilized machine learning models.The hybrid model composed of BO and categorical boosting(BO-CatBoost)was the best.Its outstanding performance was attributed to its advantages in dealing with categorical features(θincluded 6 types of angles and could be considered as categorical features).A graphical user interface was developed to facilitate the application of BO-CatBoost for the estimation of MCF.Moreover,the influences of the input parameters on the model and their relationship with MCF were analyzed.Whenθincreased from 80°to 90°,it had a significant contribution to the increase of MCF. 展开更多
关键词 rock cutting conical pick mean cutting force boosting trees bayesian optimization
在线阅读 下载PDF
Bayesian optimal design of step stress accelerated degradation testing 被引量:2
9
作者 Xiaoyang Li Mohammad Rezvanizaniani +2 位作者 Zhengzheng Ge Mohamed Abuali Jay Lee 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期502-513,共12页
This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is p... This study presents a Bayesian methodology for de- signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de- sign framework for SSADT is presented. Then, by considering his- torical data, specific optimal objectives oriented Kullback-Leibler (KL) divergence is established. A numerical example is discussed to illustrate the design approach. It is assumed that the degrada- tion model (or process) follows a drift Brownian motion; the accele- ration model follows Arrhenius equation; and the corresponding parameters follow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outiiers on the optimization plan is analyzed and the preferred sur- face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi- mum likelihood theory oriented locally optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application. 展开更多
关键词 accelerated testing bayesian theory KL divergence degradation optimal design battery.
在线阅读 下载PDF
Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier 被引量:8
10
作者 SU Hong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第3期282-287,共6页
为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合... 为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合理论的进化,含糊的集合也是嵌入的进它产生含糊的贝叶斯的最佳的分类器。它能同时从积极、反向的方向模仿模糊信息的双重的特征。进一步,贝叶斯的最佳的分类器也是的集合对从积极、反向、不确定的方面就模糊信息的三方面的特征而言求婚了。最后,一个知识库的人工的神经网络(KBANN ) 被介绍认识到贝叶斯的最佳的分类器的自动推理。它不仅减少贝叶斯的最佳的分类器的计算费用而且改进它学习质量的分类。 展开更多
关键词 模糊信息 混合方法 贝叶斯最佳分类器 自动推理 神经网络
在线阅读 下载PDF
Finding optimal Bayesian networks by a layered learning method 被引量:4
11
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 bayesian network (BN) structure LEARNING layeredoptimal LEARNING (LOL)
在线阅读 下载PDF
Coordinated Bayesian optimal approach for the integrated decision between electronic countermeasure and firepower attack
12
作者 Zheng Tang Xiaoguang Gao Chao Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期449-454,共6页
The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firep... The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity. 展开更多
关键词 electronic countermeasure firepower attack coordinated bayesian optimization algorithm(CBOA).
在线阅读 下载PDF
基于Bayesian期望改进控制和Kriging模型的并行代理优化方法 被引量:1
13
作者 杜晨 林成龙 +1 位作者 马义中 石雨葳 《计算机集成制造系统》 北大核心 2025年第4期1190-1204,共15页
针对经典期望改进策略因过于贪婪而易于陷入局部最优,以及Kriging模型十分适用于并行优化的特点,提出了基于Kriging模型和Bayesian期望改进控制的并行代理优化方法。实现过程中,Kriging模型在小样本条件下,建立输入与输出见的近似函数... 针对经典期望改进策略因过于贪婪而易于陷入局部最优,以及Kriging模型十分适用于并行优化的特点,提出了基于Kriging模型和Bayesian期望改进控制的并行代理优化方法。实现过程中,Kriging模型在小样本条件下,建立输入与输出见的近似函数关系。所提出的Bayesian期望改进控制策略充分利用Kriging模型对未试验点预测不确定性的度量能力,首先利用经典期望改进策略选取第一个试验点,并将其作为控制参考点;然后,借助所构造的控制函数更新贝叶斯期望改进控制策略,并将新增加试验点作为下个试验点选取的控制参考点。所提策略可以在提升全局探索能力的同时,使新试验点具有良好的空间分布特性。此外,借助控制函数调整方法,构建了两种拓展的Bayesian期望改进控制策略。数值算例及仿真案例结果表明:相比单点填充,Bayesian期望改进控制策略更高效;所提并行代理优化方法在同等精度条件下具有更好的稳健性及更快的收敛速度。 展开更多
关键词 期望改进策略 bayesian期望改进控制 控制函数 KRIGING模型 并行代理优化方法
在线阅读 下载PDF
uTPI-Comb: an optimal Bayesian dose-allocation method in two-agent phase Ⅰ/Ⅱ clinical trials
14
作者 Hao Liang Yaning Yang Min Yuan 《中国科学技术大学学报》 CSCD 北大核心 2024年第12期39-49,I0006,I0009,共13页
Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primari... Finding the optimal dose combination in two-agent dose-finding trials is challenging due to limited sample sizes and the extensive range of potential doses.Unlike traditional chemotherapy or radiotherapy,which primarily focuses on identifying the maximum tolerated dose(MTD),therapies involving targeted and immune agents facilitate the identifica-tion of an optimal biological dose combination(OBDC)by simultaneously evaluating both toxicity and efficacy.Cur-rently,most approaches to determining the OBDC in the literature are model-based and require complex model fittings,making them cumbersome and challenging to implement.To address these challenges,we developed a novel model-as-sisted approach called uTPI-Comb.This approach refines the established utility-based toxicity probability interval design by integrating a strategically devised zone-based local and global candidate set searching strategy,which can effectively optimize the decision-making process for two-agent dose escalation or de-escalation in drug combination trials.Extensive simulation studies demonstrate that the uTPI-Comb design speeds up the dose-searching process and provides substantial improvements over existing model-based methods in determining the optimal biological dose combinations. 展开更多
关键词 bayesian adaptive design optimal biological dose combination utility-based toxicity probability interval design zone-based candidate sets
在线阅读 下载PDF
基于Bayesian-Bagging-XGBoost算法的GFRP增强混凝土柱轴向承载力预测
15
作者 唐培根 李小亮 +2 位作者 何鑫 马国辉 张祥 《复合材料科学与工程》 北大核心 2025年第9期98-109,共12页
由于钢筋与玻璃纤维增强聚合物(Glass Fiber Reinforced Polymer,GFRP)筋力学特性的差异,GFRP筋增强混凝土柱轴压承载力计算不能简单套用钢筋混凝土柱计算方法。为提高GFRP筋增强混凝土柱轴压承载力预测模型的准确性,以253组试验数据作... 由于钢筋与玻璃纤维增强聚合物(Glass Fiber Reinforced Polymer,GFRP)筋力学特性的差异,GFRP筋增强混凝土柱轴压承载力计算不能简单套用钢筋混凝土柱计算方法。为提高GFRP筋增强混凝土柱轴压承载力预测模型的准确性,以253组试验数据作为极限梯度提升(XGBoost)算法建模的数据基础,并采用Bayesian优化算法、Bagging算法对XGBoost算法进行了优化,以提高模型的预测精度、稳定性和训练效率。采用决定系数(R^(2))、平均绝对误差(MAE)和相对根均方误差(RRSE)等指标对模型进行评价,并将其与现有预测模型进行对比分析。研究发现,Bayesian优化算法和Bagging算法可有效提高模型的训练效率、预测精度。所提出的Bayesian-Bagging-XGBoost模型的R^(2),MAE,RRSE值分别为0.6916,418.1629,0.5553,远优于现有预测模型指标,可为GFRP筋增强混凝土柱的工程应用提供更加准确的参考。 展开更多
关键词 bayesian优化 XGBoost算法 GFRP增强混凝土柱 轴向承载力 预测
在线阅读 下载PDF
基于粒子群优化算法的Bayesian网络结构学习 被引量:7
16
作者 刘欣 贾海洋 刘大有 《小型微型计算机系统》 CSCD 北大核心 2008年第8期1516-1519,共4页
近年来,Bayesian网络已经成为人工智能领域的研究热点.为了更广泛的应用Bayesian网络,本文采用粒子群优化搜索算法,通过对粒子群算法中各个算子的确定,从训练数据样本中学习到Bayesian网络结构,并用测试数据样本测试学习结果与训练数据... 近年来,Bayesian网络已经成为人工智能领域的研究热点.为了更广泛的应用Bayesian网络,本文采用粒子群优化搜索算法,通过对粒子群算法中各个算子的确定,从训练数据样本中学习到Bayesian网络结构,并用测试数据样本测试学习结果与训练数据的匹配程度,试验结果表明,该算法能有效地学习到Bayesian网络结构. 展开更多
关键词 粒子群算法 贝叶斯网络 结构学习
在线阅读 下载PDF
结合局部结构学习的Bayesian优化算法 被引量:1
17
作者 武燕 王宇平 刘小雄 《系统工程与电子技术》 EI CSCD 北大核心 2008年第12期2493-2496,共4页
在Bayesian优化算法中Bayesian网络的学习是算法应用的关键,而Bayesian网络学习是一个NP-hard问题,并且计算量大。为了能够快速获得较稳定的Bayesian网络,提出了一种新的学习策略,在学习Bayes-ian网络结构时采用对局部结构的贪婪算法,... 在Bayesian优化算法中Bayesian网络的学习是算法应用的关键,而Bayesian网络学习是一个NP-hard问题,并且计算量大。为了能够快速获得较稳定的Bayesian网络,提出了一种新的学习策略,在学习Bayes-ian网络结构时采用对局部结构的贪婪算法,并结合局部搜索利用打分测度选取最优边。对所提算法进行了分析,在算法复杂度较小的情况下,所学习的Bayesian网络可靠性明显提高,算法收敛速度加快,并且避免陷入局部最优。仿真研究表明文章所提出算法寻优能力优于传统Bayesian优化算法。 展开更多
关键词 bayesian优化算法 bayesian网络 贪婪算法
在线阅读 下载PDF
基于变异的Bayesian优化算法 被引量:1
18
作者 武燕 王宇平 刘小雄 《计算机工程》 CAS CSCD 北大核心 2007年第16期153-155,158,共4页
将变异算子与Bayesian优化算法相结合,提出了一种基于变异的Bayesian优化算法。在算法中设计了一个种群多样性函数,通过此函数引入变异算子,目的是利用变异算子的邻域搜索能力,保持种群多样性,将贝叶斯概率模型提取的全局信息与变异算... 将变异算子与Bayesian优化算法相结合,提出了一种基于变异的Bayesian优化算法。在算法中设计了一个种群多样性函数,通过此函数引入变异算子,目的是利用变异算子的邻域搜索能力,保持种群多样性,将贝叶斯概率模型提取的全局信息与变异算子的局部信息联系起来,避免陷入局部最优。仿真研究表明基于变异的Bayesian优化算法的寻优能力比Bayesian优化算法更强。 展开更多
关键词 变异算子 bayesian优化算法 种群多样性
在线阅读 下载PDF
基于Bayesian优化算法的防区外导弹低空突防路径规划 被引量:1
19
作者 史志富 张安 刘海燕 《弹箭与制导学报》 CSCD 北大核心 2005年第S7期305-308,共4页
贝叶斯优化算法能够通过贝叶斯网络来估计候选解的节点联合分布并且用该分布来产生新的候选解,该过程反复迭代就可以求得问题的最优解。仿真实例利用基于决策图的贝叶斯优化算法(BOA)得到了防区外导弹飞行的最佳路径.证明了 BOA 是解决... 贝叶斯优化算法能够通过贝叶斯网络来估计候选解的节点联合分布并且用该分布来产生新的候选解,该过程反复迭代就可以求得问题的最优解。仿真实例利用基于决策图的贝叶斯优化算法(BOA)得到了防区外导弹飞行的最佳路径.证明了 BOA 是解决该类优化问题的简单、有效的进化方法. 展开更多
关键词 贝叶斯优化算法 防区外导弹 路径规划 低空突防
在线阅读 下载PDF
结合先验知识的Bayesian优化算法研究与仿真
20
作者 武燕 王宇平 刘小雄 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5526-5529,共4页
由于一般优化问题的先验知识很难获取,因此在Bayesian网络学习中结合与利用先验知识一直是一个很难突破的问题。针对Bayesian优化算法(BOA)的特点,对一般优化问题如何发现和利用先验知识进行了分析讨论,把BOA中前一代种群所提供的信息... 由于一般优化问题的先验知识很难获取,因此在Bayesian网络学习中结合与利用先验知识一直是一个很难突破的问题。针对Bayesian优化算法(BOA)的特点,对一般优化问题如何发现和利用先验知识进行了分析讨论,把BOA中前一代种群所提供的信息作为先验知识结合到当前代Bayesian网络的学习中,提高了所学习网络的可靠性,从而提高算法的性能。仿真结果表明所提算法比传统BOA具有更强的全局寻优能力。 展开更多
关键词 先验知识 bayesian优化算法(BOA) bayesian网络 分布估计算法
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部