Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain ...Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.展开更多
Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrin...Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery.展开更多
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金supported by National Natural Science Foundation of China(Nos.51972346,51932011,51802356,and 51872334)Innovation-Driven Project of Central South University(No.2018CX004).
文摘Rechargeable aqueous zinc-ion batteries(AZIBs)have their unique advantages of cost efficiency,high safety,and environmental friendliness.However,challenges facing the cathode materials include whether they can remain chemically stable in aqueous electrolyte and provide a robust structure for the storage of Zn2+.Here,we report on H11Al2V6O23.2@graphene(HAVO@G)with exceptionally large layer spacing of(001)plane(13.36?).The graphene-wrapped structure can keep the structure stable during discharge/charge process,thereby promoting the inhibition of the dissolution of elements in the aqueous electrolyte.While used as cathode for AZIBs,HAVO@G electrode delivers ideal rate performance(reversible capacity of 305.4,276.6,230.0,201.7,180.6 mAh g?1 at current densities between 1 and 10 A g?1).Remarkably,the electrode exhibits excellent and stable cycling stability even at a high loading mass of^15.7 mg cm?2,with an ideal reversible capacity of 131.7 mAh g?1 after 400 cycles at 2 A g?1.
基金financially supported by the Guangdong Power Grid Co.,Ltd.(Grant No.GDKJXM20160000)。
文摘Aqueous Zn//MnO2 batteries are emerging as promising large-scale energy storage devices owing to their cost-effectiveness,high safety,high output voltage,and energy density.However,the MnO2 cathode suffers from intrinsically poor rate performance and rapid capacity deterioration.Here,we remove the roadblock by compositing MnO2 nanorods with highly conductive graphene,which remarkably enhances the electrochemical properties of the MnO2 cathode.Benefiting from the boosted electric conductivity and ion diffusion rate as well as the structural protection of graphene,the Zn//MnO2-graphene battery presents an admirable capacity of 301 mAh g^-1 at 0.5 A g^-1,corresponding to a high energy density of 411.6 Wh kg^-1.Even at a high current density of 10 A g^-1,a decent capacity of 95.8 mAh g^-1 is still obtained,manifesting its excellent rate property.Furthermore,an impressive power density of 15 kW kg^-1 is achieved by the Zn//MnO2-graphene battery.