The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings ...The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.展开更多
A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and ...A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.展开更多
针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding ...针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding Mode Control,CFO-FONFTSMC),以提高高速列车速度控制的鲁棒性和控制精度.首先,建立高速列车纵向多质点动力学模型,设计高精度的补偿函数观测器对系统的总扰动进行实时估计并补偿;然后,设计一种带状态负指数控制律的分数阶非奇异快速终端滑模控制算法,用于对列车的运行曲线进行跟踪控制,并通过李雅普诺夫稳定性理论证明系统在有限时间内的收敛性;最后,以CRH3型高速列车参数和合肥站-蚌埠南站的实际线路为实例,分别跟踪理想运行曲线和节能优化运行曲线进行实验验证.仿真结果表明:所提算法跟踪理想运行速度曲线的平均误差为0.01377 km/h,跟踪带干扰的节能优化运行速度曲线的平均误差为0.0364 km/h,相较于基于扩张状态观测器的滑模和非奇异快速终端滑模控制方法,所提方法具有最小的跟踪误差和更高的跟踪精度,验证了其有效性和可行性,可为列车速度跟踪控制领域的研究提供参考.展开更多
基金supported by the National Natural Science Foundation of China(9101601861273092+3 种基金61203012)the Foundation for Key Program of Ministry of Education of China(311012)the Key Program for Basic Research of Tianjin(11JCZDJC25100)the Key Program of Tianjin Natural Science(12JCZDJC30300)
文摘The focus of this paper is on control design and simulation for the longitudinal model of a flexible air-breathing hypersonic vehicle(FAHV).The model of interest includes flexibility effects and intricate couplings between the engine dynamics and flight dynamics.To overcome the analytical intractability of this model,a nominal control-oriented model is constructed for the purpose of feedback control design in the first place.Secondly,the multi-input multi-output(MIMO) quasi-continuous high-order sliding mode(HOSM) controller is proposed to track step changes in velocity and altitude,which is based on full state feedback.The simulation results are presented to verify the effectiveness of the proposed control strategy.
基金supported by Major State Basic Research Development Program(2012CB720000)National Natural Science Foundation of China(11372034)Innovative Research Team of Beijing Institute of Technology
文摘A novel high-order sliding mode control strategy is proposed for the attitude control problem of reentry vehicles in the presence of parametric uncertainties and external disturbances, which results in the robust and accurate tracking of the aerodynamic angle commands with the finite time convergence. The proposed control strategy is developed on the basis of integral sliding mode philosophy, which combines conventional sliding mode control and a linear quadratic regulator over a finite time interval with a free-final-state and allows the finite-time establishment of a high-order sliding mode. Firstly, a second-order sliding mode attitude controller is designed in the proposed high-order siding mode control framework. Then, to address the control chattering problem, a virtual control is introduced in the control design and hence a third-order sliding mode attitude controller is developed, leading to the chattering reduction as well as the control accuracy improvement. Finally, simulation examples are given to illustrate the effectiveness of the theoretical results.
文摘针对观测器估计精度偏低及高速列车系统的强耦合、受外界扰动、参数时变等问题,提出一种基于补偿函数观测器的分数阶非奇异快速终端滑模控制算法(Compensating Function Observer-Fractional Order Non-singular Fast Terminal Sliding Mode Control,CFO-FONFTSMC),以提高高速列车速度控制的鲁棒性和控制精度.首先,建立高速列车纵向多质点动力学模型,设计高精度的补偿函数观测器对系统的总扰动进行实时估计并补偿;然后,设计一种带状态负指数控制律的分数阶非奇异快速终端滑模控制算法,用于对列车的运行曲线进行跟踪控制,并通过李雅普诺夫稳定性理论证明系统在有限时间内的收敛性;最后,以CRH3型高速列车参数和合肥站-蚌埠南站的实际线路为实例,分别跟踪理想运行曲线和节能优化运行曲线进行实验验证.仿真结果表明:所提算法跟踪理想运行速度曲线的平均误差为0.01377 km/h,跟踪带干扰的节能优化运行速度曲线的平均误差为0.0364 km/h,相较于基于扩张状态观测器的滑模和非奇异快速终端滑模控制方法,所提方法具有最小的跟踪误差和更高的跟踪精度,验证了其有效性和可行性,可为列车速度跟踪控制领域的研究提供参考.