期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
基于AFMD和SVDD的风电机组变桨轴承损伤识别
1
作者 王晓龙 张博文 +3 位作者 金韩微 付锐棋 杨秀彬 吴鹏 《太阳能学报》 北大核心 2025年第3期514-523,共10页
针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适... 针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适应特征模态分解,从中提取出蕴含丰富特征信息的模态分量;继而计算出所提取模态分量的包络信号并做进一步奇异值分解降噪处理,从而增强包络信号的信噪比;最后对比理论损伤特征频率及包络谱中幅值突出的频率成分,用于判断变桨轴承的故障损伤。实验数据分析结果表明,所提方法能从复杂原始振动信号中有效提取出微弱特征信息,实现变桨轴承损伤部位的准确甄别,具有一定工程参考借鉴价值。 展开更多
关键词 风电机组 变桨轴承 损伤识别 自适应特征模态分解 奇异值分解降噪
在线阅读 下载PDF
多级降噪联合特征增强的轴承故障诊断 被引量:1
2
作者 廖运虎 纪国宜 《振动与冲击》 北大核心 2025年第8期199-208,共10页
对于强噪声背景下,滚动轴承早期故障特征难以提取的问题,提出以改进奇异值分解(improved singular value decomposition,ISVD)联合改进小波分解的多级降噪为预处理,以参数自适应多点最优最小熵解卷积(multipoint optimal minimum entrop... 对于强噪声背景下,滚动轴承早期故障特征难以提取的问题,提出以改进奇异值分解(improved singular value decomposition,ISVD)联合改进小波分解的多级降噪为预处理,以参数自适应多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)特征增强为后处理的新方法。先是针对奇异值分解难以选择奇异值的问题,提出一种ISVD降噪方法,避免了奇异值的选取;针对软、硬阈值小波降噪的缺陷,提出一种新的小波降噪方法。针对MOMEDA中多点峭度谱求解周期时易受噪声干扰问题,首先利用多级降噪对信号进行降噪预处理,再利用新的周期指标多点包络峭度谱识别周期。通过仿真以及试验验证了该方法的有效性和优越性。 展开更多
关键词 多级降噪 改进奇异值分解(ISVD) 改进小波分解 多点包络峭度谱 强噪声
在线阅读 下载PDF
基于加权张量分解的高光谱混合噪声去除方法
3
作者 李东益 沈焕锋 +1 位作者 管小彬 储栋 《遥感信息》 北大核心 2025年第1期1-9,共9页
高光谱影像不可避免地会受到高斯噪声、脉冲噪声、条带噪声等不同类型的混合噪声影响,极大地限制了影像的后续应用。各国学者已经发展了系列高光谱去噪方法,但仍难以处理多种类型的混合噪声,在抑制噪声的同时往往难以兼顾高频细节的保留... 高光谱影像不可避免地会受到高斯噪声、脉冲噪声、条带噪声等不同类型的混合噪声影响,极大地限制了影像的后续应用。各国学者已经发展了系列高光谱去噪方法,但仍难以处理多种类型的混合噪声,在抑制噪声的同时往往难以兼顾高频细节的保留,特别是对条带噪声的去除效果不佳。为此,文章提出一种联合加权非局部低秩张量与条带低秩正则化约束的高光谱去噪模型,通过设计的加权自适应收缩算法实现更精确的低秩张量奇异值分解,能在影像细节保真的前提下有效去除严重场景噪声。另外,利用低秩矩阵分解对条带噪声进行建模,增强了模型对条带噪声的去除能力,从而有效去除不同类型的混合噪声。模拟实验和真实实验结果显示,该方法在定性和定量上均优于对比方法,能够在去除不同高光谱传感器各类噪声的同时更好地保留空间细节。 展开更多
关键词 高光谱影像去噪 张量奇异值分解 条带噪声 非局部模型 低秩表示
在线阅读 下载PDF
融合低秩预分离与随机抖动机制的非凸型TRPCA算法
4
作者 潘昱妍 张德 李壮举 《智能系统学报》 北大核心 2025年第4期822-837,共16页
为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇... 为了解决张量鲁棒主成分分析(tensor robust principal component analysis,TRPCA)还原低秩结构时同等收缩奇异值造成的信息提取偏差问题,本文考虑区别对待奇异值,使用非凸加权张量Schatten-p范数(0<p<1)分析张量数据,可减少对奇异值的惩罚。为解决数据受损严重难以恢复的问题,提出低秩预分离的方法实现近似低秩部分和近似稀疏部分的预先分离;为增强高阶张量之间相关性同时降低数据对特定噪声的敏感性,提出随机抖动正则器的机制对预分离后成分分别选取随机区域优化,利用噪声信息的随机性来正则化算法得以约束模型的复杂度;最后使用不同类型的图像数据集,包括彩色图像、核磁共振图像、高光谱及多光谱图像和灰度视频,进行高维数据恢复实验。结果表明该方法在图像恢复性能上明显优于其他TRPCA方法,并且在数据受损严重时同样具有优势,有效提取主成分信息的同时减小数据对特定噪声的依赖,具有较强的鲁棒性和适应性,可为TRPCA方法在图像恢复领域中提供参考。 展开更多
关键词 主成分分析 张量 图像去噪 图像处理 机器学习 计算机应用 信号处理 奇异值分解
在线阅读 下载PDF
高机动目标的改进强跟踪CKF自适应IMM算法 被引量:3
5
作者 成怡 刘铭阳 徐国伟 《中国惯性技术学报》 EI CSCD 北大核心 2024年第7期715-723,共9页
为提升高机动目标跟踪精度,提出了一种改进的强跟踪CKF自适应交互多模型跟踪算法。在IMM算法运动模型集中引入CS-Jerk模型,增强对高机动目标的适应能力,采用奇异值分解(SVD)算法解决模型集中因模型扩维而导致CKF算法无法Cholesky分解的... 为提升高机动目标跟踪精度,提出了一种改进的强跟踪CKF自适应交互多模型跟踪算法。在IMM算法运动模型集中引入CS-Jerk模型,增强对高机动目标的适应能力,采用奇异值分解(SVD)算法解决模型集中因模型扩维而导致CKF算法无法Cholesky分解的问题;提出了一种改进的强跟踪CKF算法,降低强跟踪CKF算法的计算量;利用模型的后验信息对IMM算法模型转移概率进行自适应调整,提高跟踪精度。仿真结果表明,基于所提算法目标的位置均方根误差均值和速度均方根误差均值较IMM-CKF算法分别降低了22.50%和16.58%,有效提高了目标跟踪精度。 展开更多
关键词 高机动目标 目标跟踪 自适应交互多模型 强跟踪CKF SVD分解
在线阅读 下载PDF
基于EMD-SVD的矿山微震信号降噪方法及其应用 被引量:1
6
作者 朱权洁 隋龙琨 +2 位作者 陈学习 欧阳振华 刘晓辉 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期110-119,共10页
为了提高微震监测技术对微震信号分析处理的准确性,充分提取微震信号波形中的有效信息,针对矿山微震信号非平稳、非线性的特点,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的联合降噪方法。该方法首先通过EMD分解获得信号的IMF分... 为了提高微震监测技术对微震信号分析处理的准确性,充分提取微震信号波形中的有效信息,针对矿山微震信号非平稳、非线性的特点,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的联合降噪方法。该方法首先通过EMD分解获得信号的IMF分量,利用相关系数、方差贡献率和相似度对IMF分量进行了优选;然后使用优选后的IMF分量重构一维微震信号时间序列的相空间数据,经过SVD分解后,利用奇异值能量百分比确立了SVD重构阶数,并根据SVD恢复原理得到了降噪后的一维微震时间序列;最后以山东某矿现场矿山爆破为例,采用不同降噪方法对3类典型微震信号进行了降噪处理,并对其降噪效果进行了对比分析。结果表明,EMD-SVD降噪方法与传统降噪方法相比,其平均信噪比提高了35%,平均均方根误差降低了50%,有效剔除了微震信号的噪声分量,保留了信号的特征信息。该研究对分析矿山微震信号、微震事件定位及煤矿动力灾害监测具有重要意义。 展开更多
关键词 矿山安全 微震监测技术 微震信号降噪 经验模态分解 奇异值分解
在线阅读 下载PDF
奇异值分解五阶容积卡尔曼滤波汽车状态估计
7
作者 吴伟斌 黄靖凯 +1 位作者 曾锦彬 李浩欣 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第3期74-83,共10页
针对三阶滤波对高维汽车非线性模型估计精度有限的问题,以电动汽车为研究对象,提出了一种基于奇异值分解的五阶容积卡尔曼滤波(SVD-FCKF)车辆状态估计器。首先基于Dugoff轮胎模型,构建高维非线性7自由度车辆动力学模型。然后根据三阶球... 针对三阶滤波对高维汽车非线性模型估计精度有限的问题,以电动汽车为研究对象,提出了一种基于奇异值分解的五阶容积卡尔曼滤波(SVD-FCKF)车辆状态估计器。首先基于Dugoff轮胎模型,构建高维非线性7自由度车辆动力学模型。然后根据三阶球面-径向容积规则将CKF拓展到五阶,使其具有五阶泰勒级数展开精度,同时利用奇异值分解代替传统Cholesky分解,提高估计器的鲁棒性。最后利用Carsim和Matlab/Simulink联合仿真平台对SVD-FCKF进行验证,结果表明:改进的SVD-FCKF估计器能够有效提高电动汽车纵向速度、侧向速度、质心侧偏角和四轮转速的估计精度和稳定性,多工况适应能力强,整体估计效果优于CKF估计器。研究结果为电动汽车主动安全研究提供了理论支撑,具有实际应用价值。 展开更多
关键词 车辆动力学模型 状态估计 奇异值分解 五阶容积卡尔曼滤波
在线阅读 下载PDF
强噪声中检测微弱目标信号特征的量子信号处理算法 被引量:2
8
作者 庾天翼 李舜酩 +2 位作者 陆建涛 马会杰 龚思琪 《计算机集成制造系统》 EI CSCD 北大核心 2024年第2期482-495,共14页
随着噪声功率的增强,微弱目标信号的特征受噪声污染变得模糊且难以区分,导致微弱信号检测算法失效,提出一种可以保护目标信号特征的量子信号处理方法——局域半经典信号分析算法。详细介绍了算法实现量子化的原理和在量子域中保护目标... 随着噪声功率的增强,微弱目标信号的特征受噪声污染变得模糊且难以区分,导致微弱信号检测算法失效,提出一种可以保护目标信号特征的量子信号处理方法——局域半经典信号分析算法。详细介绍了算法实现量子化的原理和在量子域中保护目标信号特征的性质;给出算法步骤以及重要参数的计算方式;将所提算法与奇异值分解、小波阈值降噪算法结合进行了仿真分析和实验验证。结果表明,所提算法保护目标信号特征的能力可以帮助降噪算法检测极低信噪比的微弱信号,与其他方法结合可极大改善信噪比,准确提取信噪比为-30 dB的微弱目标信号,算法性能优越。 展开更多
关键词 微弱信号检测 量子信号处理 保护特征 局域半经典信号分析 奇异值分解 小波阈值降噪
在线阅读 下载PDF
基于多滤波降噪法的桥梁应变监测信号处理 被引量:1
9
作者 卢海林 郭馨阳 郝静 《噪声与振动控制》 CSCD 北大核心 2024年第4期180-187,共8页
针对桥梁应变监测信号存在多源噪声,以及现有降噪法难以准确选取有效固有模态函数(Intrinsic Mode Function,IMF)分量的问题,提出一种有效的多滤波降噪法。首先,采用自适应噪声抵消器对含噪信号进行预处理,以滤除低频噪声,再对其进行自... 针对桥梁应变监测信号存在多源噪声,以及现有降噪法难以准确选取有效固有模态函数(Intrinsic Mode Function,IMF)分量的问题,提出一种有效的多滤波降噪法。首先,采用自适应噪声抵消器对含噪信号进行预处理,以滤除低频噪声,再对其进行自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)得到IMF分量,并利用频谱分析-自相关函数双重判断准则选取IMF分量;随后,对其进行奇异值分解,利用奇异值差分谱确定各分量有效阶数;最后,将各有效IMF分量的有效阶重构得到去噪信号。通过模拟试验验证上述方法的合理性,并将其应用于桥梁应变监测信号处理。结果表明:采用上述双重判断准则选取有效IMF分量具有较好效果,且提出的多滤波降噪法在桥梁应变监测信号处理中具有显著的优越性。 展开更多
关键词 振动与波 桥梁应变 多滤波降噪法 双重判断准则 固有模态函数 CEEMDAN 奇异值分解
在线阅读 下载PDF
基于改进TVF-EMD与SVD的轴承故障特征提取 被引量:2
10
作者 石渡江 王文波 《机床与液压》 北大核心 2024年第18期218-229,共12页
滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信... 滚动轴承早期故障信号微弱,故障特征难以提取。针对此问题,提出一种基于时变滤波经验模态分解(TVF-EMD)模态分量自适应融合与奇异值分解(SVD)降噪的轴承早期故障特征提取方法。为了降低故障信号的非线性和非平稳性,通过TVF-EMD将轴承信号分解为一系列本征模态函数(IMF)。为了克服TVF-EMD分解后IMF分量过多的不足,构造包络故障信息能量占比(EREFI)指标,通过EREFI对IMF分量进行降序排列,并依据包络故障信息能量占比递增原则对IMF分量依次进行融合,直至找到最优融合分量。最后,通过SVD对最优融合分量降噪,并提取故障特征。通过仿真信号以及2个实测轴承故障信号对所提方法性能进行了实验验证。实验结果表明:所提方法具有良好的敏感特征筛选融合能力和降噪能力,能更准确提取出轴承早期故障特征,实现故障类型的准确识别。 展开更多
关键词 时变滤波经验模态分解(TVF-EMD) 奇异值降噪(SVD) 包络故障信息能量占比(EREFI) 故障诊断 滚动轴承
在线阅读 下载PDF
基于SVD-IACMD的GIS振动信号去噪算法 被引量:3
11
作者 涂嘉毅 关向雨 +2 位作者 赵俊义 林建港 赖泽楷 《电力工程技术》 北大核心 2024年第6期163-172,共10页
振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇... 振动测量对发现气体绝缘开关设备(gas insulated switchgear,GIS)潜在性缺陷具有重要意义,但GIS本体振动信号易受基础振动、测量噪声以及环境噪声的影响,使得现场GIS振动带电检测和机械缺陷诊断的效果较差。针对此问题,提出一种基于奇异值分解(singular value decomposition,SVD)-改进自适应啁啾模态分解(improve adaptive chirp mode decomposition,IACMD)的现场振动信号降噪算法。该方法首先利用SVD对原始振动信号进行预处理,滤除低频基础振动和测量噪声,其次利用鱼鹰优化算法(osprey optimization algorithm,OOA)对处理后的信号进行自适应模态分解,得到分解后的固有模态(intrinsic mode functions,IMF)分量,再利用互相关系数筛选有效分量重构振动信号。模拟信号与现场信号测试结果表明:与OOA-自适应啁啾模态分解(adaptive chirp mode decomposition,ACMD)和SVD-变分模态分解(variational mode decomposition,VMD)相比,所提出的SVD-IACMD算法可以去除基础振动、测量噪声和环境噪声,保留GIS本体振动的基频和谐波分量,为GIS现场抗干扰振动检测和机械缺陷诊断提供技术支持。 展开更多
关键词 气体绝缘开关设备(GIS) 信号降噪 奇异值分解(SVD) 改进自适应啁啾模态分解(IACMD) 鱼鹰优化算法(OOA) 机械振动
在线阅读 下载PDF
基于FFT奇异值分解的光谱信号去噪算法 被引量:19
12
作者 朱红求 程菲 +2 位作者 胡浩南 周灿 李勇刚 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第1期277-281,共5页
微型光谱仪在采集光谱信号过程中,光谱数据经常受到来自仪器光学系统和电子电路中的干扰出现噪声和光源特征峰,严重干扰了真实光谱信号的图谱特征,因此需要使用合理的预处理方法保留光谱信号中有用信号并尽可能过滤噪声信号同时将光源... 微型光谱仪在采集光谱信号过程中,光谱数据经常受到来自仪器光学系统和电子电路中的干扰出现噪声和光源特征峰,严重干扰了真实光谱信号的图谱特征,因此需要使用合理的预处理方法保留光谱信号中有用信号并尽可能过滤噪声信号同时将光源特征峰滤除,从而提高光谱信息定量分析的稳健性和准确性。并且在线检测系统要求尽可能减少人为参数选择对去噪效果的影响,奇异值分解经常应用于由系统电路引起的噪声去噪,奇异值降噪阶次的选取对提高信号信噪比十分关键,但是往往参数选取主要依赖经验调试和实验验证。因此,提出了一种基于奇异值重构信号分量频率的光谱信号去噪算法。该算法首先重构原始光谱信号单个奇异值分量信号,然后对每个奇异值分量信号作快速傅里叶变换,得到每个奇异值分量信号快速傅里叶变换结果中振幅最大所对应的频率值,最后按照奇异值递减方式对相应分量信号频率值进行一阶滞后差分,得到频率差分谱,研究表明,差分谱第一个谱峰值在大于设定阈值处所对应的奇异值即为奇异值分解降噪的有效阶次。结果表明:对包含多种重金属离子的溶液在线测量的紫外可见光谱信号,添加不同强度的随机噪声,并进行去噪处理,使用信噪比和均方根误差两个性能指标进行对比。所提算法相较于SG滤波算法和小波变换去噪算法信噪比分别提高了22.05%,10.88%,均方根误差分别降低了74.28%,41.29%。所提算法完全基于数据驱动,在处理真实紫外可见光谱信号中不仅抑制了噪声影响,而且将微型光谱仪的光源特征峰有效滤除,在紫外可见光谱信号的定量分析中具有较好的应用前景。 展开更多
关键词 奇异值分解 FFT 光谱去噪 有效阶次 谱峰
在线阅读 下载PDF
基于张量分解的个性化标签推荐算法 被引量:18
13
作者 李贵 王爽 +3 位作者 李征宇 韩子扬 孙平 孙焕良 《计算机科学》 CSCD 北大核心 2015年第2期267-273,共7页
基于互联网的社会标签推荐系统为广大用户提供了一个信息共享平台,让用户以"标签"的形式为其浏览的物品标注信息。标签既描述了物品语义,又反映了用户偏好。标签系统的最大优势在于可以发挥群体的智能,获得用户对物品比较准... 基于互联网的社会标签推荐系统为广大用户提供了一个信息共享平台,让用户以"标签"的形式为其浏览的物品标注信息。标签既描述了物品语义,又反映了用户偏好。标签系统的最大优势在于可以发挥群体的智能,获得用户对物品比较准确的关键词描述,而准确的标签信息是提升个性化推荐系统性能的重要资源。然而,现存的标签推荐系统面临的问题是:由于兴趣的不同,不同的用户对于同一物品可能会打不同的标签,或者是同一标签对于不同用户可能会蕴含不同的语义。因此如何有效获取用户、物品、标签3者之间潜在的语义关联成为标签推荐系统需要解决的主要问题。为此引入三维张量模型,利用三维张量的3个维度来分别描述社会标签推荐系统中3种类型的实体:用户、物品、标签。在基于历史标签数据(标签元数据)构建初始张量的基础上,应用高阶奇异值分解(HOSVD)方法降低张量维度,同时实现3种类型实体之间潜在的语义关联分析,从而进一步提高标签推荐系统的准确性。实验结果表明,该方法较当前两种典型的标签推荐算法(FolkRank和PR)在准确率和召回率性能指标上有明显提升。 展开更多
关键词 社会标签 标签推荐 张量分解 高阶奇异值分解(HOSVD)
在线阅读 下载PDF
基于奇异值分解和Savitzky-Golay滤波器的信号降噪方法 被引量:17
14
作者 朱红运 王长龙 +1 位作者 王建斌 马晓琳 《计算机应用》 CSCD 北大核心 2015年第10期3004-3007,3012,共5页
为降低信号中噪声的干扰,将奇异值分解(SVD)理论和Savitzky-Golay滤波器相结合提出了一种新的降噪方法。该方法首先分析了信号负熵随信噪比变化的规律,而后通过将负熵作为降噪效果的评估参数,确定了SVD降噪过程中构造的Hankel矩阵的最... 为降低信号中噪声的干扰,将奇异值分解(SVD)理论和Savitzky-Golay滤波器相结合提出了一种新的降噪方法。该方法首先分析了信号负熵随信噪比变化的规律,而后通过将负熵作为降噪效果的评估参数,确定了SVD降噪过程中构造的Hankel矩阵的最优维数;其次采用Savitzky-Golay滤波器对用于重构信号的奇异值进行了平滑滤波处理,并分析了Savitzky-Golay滤波器结构对降噪效果的影响,最后通过定义误差函数确定了Savitzky-Golay滤波器的最优结构。将该方法应用于线性调频信号和多成分周期信号的降噪实验,结果表明:基于SVD和Savitzky-Golay滤波器的降噪方法能有效降低噪声干扰,是一种有效的信号降噪方法。 展开更多
关键词 降噪 奇异值分解 负熵 Savitzky-Golay滤波器 HANKEL矩阵
在线阅读 下载PDF
奇异值分解带通滤波背景抑制和去噪 被引量:39
15
作者 胡谋法 董文娟 +1 位作者 王书宏 陈曾平 《电子学报》 EI CAS CSCD 北大核心 2008年第1期111-116,共6页
针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更... 针对可见光图像弱小目标检测中的背景抑制和去噪问题,提出了奇异值分解(Singular Value Decomposition,SVD)带通滤波新方法.首先分析了图像奇异值与目标、噪声和图像背景的关系,结果表明奇异值的高序部分更多地反映图像噪声,中序部分更多地反映目标性质,而低序部分更多地反映图像背景.以此为依据提出了SVD-Ⅰ型和SVD-Ⅱ型两种带通滤波器,并给出了奇异值曲线转折点法和门限准则法两种滤波器参数确定方法.实验表明SVD带通滤波能有效抑制图像背景,去除噪声,进而提高弱小目标的信噪比. 展开更多
关键词 背景抑制 图像去噪 奇异值分解(SVD)带通滤波 奇异值曲线转折点法 门限准则法
在线阅读 下载PDF
基于峰值信噪比和小波方向特性的图像奇异值去噪技术 被引量:23
16
作者 王敏 周磊 +1 位作者 周树道 叶松 《应用光学》 CAS CSCD 北大核心 2013年第1期85-89,共5页
提出一种利用小波变换子图像不同的方向特性和峰值信噪比进行奇异值分解的图像去噪算法。由于图像经过小波变换后,低频子图像集中了原图像的大部分能量噪声,故仅作简单维纳滤波;而噪声则主要集中在小波域中的三个不同方向的高频子图中,... 提出一种利用小波变换子图像不同的方向特性和峰值信噪比进行奇异值分解的图像去噪算法。由于图像经过小波变换后,低频子图像集中了原图像的大部分能量噪声,故仅作简单维纳滤波;而噪声则主要集中在小波域中的三个不同方向的高频子图中,且系数较小,因此可以利用奇异值分解进行去噪处理,即用较大的奇异值和对应的特征向量重构出去噪图像,然而由于奇异值分解固有的行列方向性,对于高频对角线子图重构出的图像去噪效果不理想,故采取旋转至行列方向后再进行常用的奇异值滤波;最后将去噪后的低频和高频子图进行小波反变换重构出最终的去噪图像,其中重构所需的奇异值个数由图像的峰值信噪比确定。实验结果表明,该方法在有效去噪的同时较好的保留了原有的高频细节信息。 展开更多
关键词 图像去噪 小波变换 奇异值分解 峰值信噪比 小波重构
在线阅读 下载PDF
基于奇异值分解的电感式磨粒传感器信号降噪方法研究 被引量:8
17
作者 范红波 张英堂 +1 位作者 李国璋 程远 《传感技术学报》 CAS CSCD 北大核心 2010年第8期1129-1133,共5页
利用奇异值降噪技术对含有系统噪声的电感式磨粒传感器测试信号进行处理。针对奇异值降噪中轨道矩阵最优重构阶次难以有效确定的问题,提出一种基于噪声阈值和奇异值聚类的重构阶次确定方法。首先由含噪信号轨道矩阵的嵌入维数和噪声方... 利用奇异值降噪技术对含有系统噪声的电感式磨粒传感器测试信号进行处理。针对奇异值降噪中轨道矩阵最优重构阶次难以有效确定的问题,提出一种基于噪声阈值和奇异值聚类的重构阶次确定方法。首先由含噪信号轨道矩阵的嵌入维数和噪声方差确定奇异值的噪声阈值,得到重构阶次的上限;然后依据信号奇异值分布离散,噪声奇异值分布集中的特点,对大于噪声阈值的奇异值进行聚类分析,进一步确定轨道矩阵的重构阶次。仿真和实测信号降噪效果表明,该降噪算法能显著改善含噪信号的信噪比,降噪后的信号具有较小的峰值误差,适合电感式磨粒传感器信号的降噪。 展开更多
关键词 信号降噪 奇异值分解 重构阶次 磨粒传感器
在线阅读 下载PDF
副高、极涡因子对我国夏季降水的影响 被引量:85
18
作者 黄嘉佑 刘舸 赵昕奕 《大气科学》 CSCD 北大核心 2004年第4期517-526,共10页
利用奇异值分解方法 (SVD)分别分析了北半球副高指数和北半球极涡指数对我国夏季降水 ( 6~ 8月 )的影响 ,并详细讨论了对我国夏季降水影响重大的具体关系 ,以及它们影响的区域情况。研究发现 ,我国夏季降水主要受前期冬季极涡强弱的影... 利用奇异值分解方法 (SVD)分别分析了北半球副高指数和北半球极涡指数对我国夏季降水 ( 6~ 8月 )的影响 ,并详细讨论了对我国夏季降水影响重大的具体关系 ,以及它们影响的区域情况。研究发现 ,我国夏季降水主要受前期冬季极涡强弱的影响。冬季副高因子的影响是半球范围的 ,而春季副高因子的影响主要取决于我国南部的副高系统。综合研究极涡、副高两者对我国夏季降水的影响要比分别研究它们各自的影响所得模态的代表性好 ,预报价值也更高。 展开更多
关键词 降水 奇异值分解 副高 极涡
在线阅读 下载PDF
基于最小方差估计的图像低秩去噪 被引量:9
19
作者 郭强 张彩明 +2 位作者 张云峰 刘慧 沈晓红 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第12期2237-2246,共10页
自然图像通常表现出一定的自相似性,这种相似性意味着由相似图像块所构成的图像矩阵具有低秩性.基于图像的这种低秩性和最小方差估计理论,提出一种有效的迭代去噪方法.该方法通过构造图像相似块矩阵将图像去噪问题转化为低秩矩阵估计问... 自然图像通常表现出一定的自相似性,这种相似性意味着由相似图像块所构成的图像矩阵具有低秩性.基于图像的这种低秩性和最小方差估计理论,提出一种有效的迭代去噪方法.该方法通过构造图像相似块矩阵将图像去噪问题转化为低秩矩阵估计问题,并由最小方差估计理论导出低秩矩阵的估计值;在此基础上,对图像块的估计值进行加权平均即可重构出去噪后的图像;针对少量噪声残留问题,将去噪方法与反向投影方法相结合实现图像的迭代去噪,进一步抑制图像中残留的噪声.实验结果表明,采用文中方法产生的去噪图像不仅具有较高的峰值信噪比和特征相似度均值,而且具有很好的视觉效果. 展开更多
关键词 图像去噪 奇异值分解 最小方差估计 低秩性 自相似性
在线阅读 下载PDF
局部放电干扰评价参数信噪比的二阶估计 被引量:7
20
作者 唐炬 李伟 +2 位作者 姚陈果 张晓星 谢颜斌 《中国电机工程学报》 EI CSCD 北大核心 2011年第7期125-131,共7页
针对实测局部放电(partial discharge,PD)信号去噪的盲目性,提出对PD信号受干扰程度先作估计评价再决定是否需要去噪的思想。运用二阶统计理论,对构造的实测PD信号相关矩阵进行奇异值分解,将得到的奇异值空间划分为代表信号能量和噪声... 针对实测局部放电(partial discharge,PD)信号去噪的盲目性,提出对PD信号受干扰程度先作估计评价再决定是否需要去噪的思想。运用二阶统计理论,对构造的实测PD信号相关矩阵进行奇异值分解,将得到的奇异值空间划分为代表信号能量和噪声能量的子空间,建立表征信号和噪声能量大小的判别规则,对PD信号受干扰程度评价参数信噪比(signal-to-noise ratio,SNR)进行二阶估计。通过对模拟与实测PD信号的SNR二阶估计对比分析表明,该二阶估计能很好地判断PD信号受干扰程度,为后续PD信号的去噪处理提供理论依据。 展开更多
关键词 电力系统 局部放电 相关矩阵 评价参数 奇异值分解 信号去噪
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部