期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment 被引量:4
1
作者 Shang-Qu Yan Han Zhang +2 位作者 Bei Liu Hao Tang Sheng-You Qian 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期601-607,共7页
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-... In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained. 展开更多
关键词 compressed sensing high intensity focused ultrasound(HIFU)echo signal multi-scale fuzzy entropy refined composite multi-scale fuzzy entropy
在线阅读 下载PDF
Role of acoustic interface layer during high intensity focused ultrasound therapeutics 被引量:1
2
作者 Li Quanyi Fu Liyuan Qin Yan Li Faqi Wang Zhibiao 《Journal of Medical Colleges of PLA(China)》 CAS 2008年第4期223-227,共5页
After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to b... After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to blow the acoustic interface layer to mimic "point" exposure. The results showed that the volumes of biological focal region (BFR) were enlarged when the acoustic focal region (AFR) is close with interface layer. This meant that the magnetic nano-particles enhanced the therapeutic efficiency of HIFU. When the distance of the AFR from the interface layer was 10 mm, the size and shape of the BFR were similar with those of the control group, but a larger lesion at the interface, which was harmful for treatment, was observed. When the distance of the AFR to the interface layer increased to 30 mm, the size and shape of the BFR were also similar to those of the control group. When the thickness of the interface layer diminished, the utility of enhancement decreased. Continuous increase of the safe area for treatment and decrease of the utility of enhancement were observed along with the abatement of the thickness of the interface layer 展开更多
关键词 Magnetic nano-particles Interface layer Biological focal region high intensity focused ultrasound
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部