In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-...In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.展开更多
After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to b...After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to blow the acoustic interface layer to mimic "point" exposure. The results showed that the volumes of biological focal region (BFR) were enlarged when the acoustic focal region (AFR) is close with interface layer. This meant that the magnetic nano-particles enhanced the therapeutic efficiency of HIFU. When the distance of the AFR from the interface layer was 10 mm, the size and shape of the BFR were similar with those of the control group, but a larger lesion at the interface, which was harmful for treatment, was observed. When the distance of the AFR to the interface layer increased to 30 mm, the size and shape of the BFR were also similar to those of the control group. When the thickness of the interface layer diminished, the utility of enhancement decreased. Continuous increase of the safe area for treatment and decrease of the utility of enhancement were observed along with the abatement of the thickness of the interface layer展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774088 and 11474090)。
文摘In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.
基金the Development Plan for Innovation Teams of Ministry of Education (2005-33)the National Natural Science Foundation of China (30471653)the Natural Science Foundation of Chongqing (2006BA5020)
文摘After interface layer was simulated by the magnetic nano-particles in the egg white phantom, high intensity focused ultrasound (HIFU) at the same dosage was introduced to radiate the phantom in different depths to blow the acoustic interface layer to mimic "point" exposure. The results showed that the volumes of biological focal region (BFR) were enlarged when the acoustic focal region (AFR) is close with interface layer. This meant that the magnetic nano-particles enhanced the therapeutic efficiency of HIFU. When the distance of the AFR from the interface layer was 10 mm, the size and shape of the BFR were similar with those of the control group, but a larger lesion at the interface, which was harmful for treatment, was observed. When the distance of the AFR to the interface layer increased to 30 mm, the size and shape of the BFR were also similar to those of the control group. When the thickness of the interface layer diminished, the utility of enhancement decreased. Continuous increase of the safe area for treatment and decrease of the utility of enhancement were observed along with the abatement of the thickness of the interface layer