高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提...高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提出了一种依据图片纹理方向,结合预测模式之间的关联性来确定帧内预测模式的快速算法.实验结果表明,本算法与HEVC参考软件HM16.20相比,在BD-Rate损失仅为5.79%的情况下,节省46%以上的编码时间,显著降低了帧内预测模式决策的复杂度,便于在嵌入式系统等硬件资源有限的端侧实现算法落地.展开更多
HEVC(High efficiency video coding)是新一代的视频编码标准,它仍然采用了与先前视频编码标准H.264/AVC一样的混合视频编码的基本框架,但在各个编码模块都进行了改进和革新。与H.264/AVC相比较,在相同视频质量和应用条件下HEVC的码率...HEVC(High efficiency video coding)是新一代的视频编码标准,它仍然采用了与先前视频编码标准H.264/AVC一样的混合视频编码的基本框架,但在各个编码模块都进行了改进和革新。与H.264/AVC相比较,在相同视频质量和应用条件下HEVC的码率降低将近一半。本文对HEVC的关键技术进行综述,着重研究探讨了帧内和帧间预测技术的原理和实现过程。展开更多
高效视频编码(High Efficiency Video Coding,HEVC)作为下一代新的视频编码标准,旨在有限网络带宽下传输高质量的网络视频。与现有的视频编码标准相比,高效视频编码具有更高的灵活性和压缩率。编码单元(Coding Unit,CU)是视频编码处理...高效视频编码(High Efficiency Video Coding,HEVC)作为下一代新的视频编码标准,旨在有限网络带宽下传输高质量的网络视频。与现有的视频编码标准相比,高效视频编码具有更高的灵活性和压缩率。编码单元(Coding Unit,CU)是视频编码处理的基本单元,原有的算法通过四叉树递归获取最佳CU深度,在提高视频压缩性能的同时引入了较高的计算复杂度。针对该问题,提出了一种快速编码深度选择算法,该算法利用相邻CU的深度信息计算一个深度预测特征值,通过该特征值进行深度选择,以避免不必要的计算,降低计算复杂度。实验结果表明,该算法在保证视频压缩效果的同时有效降低了计算复杂度。展开更多
针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度...针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度层编码单元上结合像素方差,以像素点为单位计算相应的纹理方向强度,确定其纹理复杂度并结合阈值策略预测最终划分深度;其次,比较垂直和水平方向强度关系及统计预测候选模式概率分布,以减少预测模式数量,确定最优候选模式子集,进一步降低编码复杂度。所提算法与平台HM15.0相比,编码时间平均节省51.997%,BDPSNR(Bjontegaard Delta Peak Signal-to-Noise Rate)仅降低0.059 d B,BDBR(Bjontegaard Delta Bit Rate)仅上升了1.018%。实验数据表明,在保证信噪比和比特率基本不变的同时,所提算法能有效降低编码复杂度,利于HEVC的实时视频应用。展开更多
高效视频编码(high efficiency video coding,HEVC)帧间预测方法相比于其他视频编码标准具有更高的编码效率,但同时也带来了更高的编码复杂度.为了加速HEVC帧间预测过程,提出了一种快速帧间预测算法.该算法首先判断当前编码单元(coding ...高效视频编码(high efficiency video coding,HEVC)帧间预测方法相比于其他视频编码标准具有更高的编码效率,但同时也带来了更高的编码复杂度.为了加速HEVC帧间预测过程,提出了一种快速帧间预测算法.该算法首先判断当前编码单元(coding unit,CU)的运动特征,然后根据不同的运动特征采取不同的优化措施以减少帧间预测时间.基于HEVC校验模型(HM6.0)的实验结果表明,该算法在基本保持传统算法性能的基础上,编码时间平均可减少53.33%.展开更多
高效视频编码HEVC(High Efficiency Video Coding)采用计算复杂度较高的率失真优化方法对编码单元CU(Coding Unit)划分进行判决,具有较高的时间复杂度,编码所需时间较长。为降低HEVC编码复杂度,加快编码速度,提出一种基于深度预测的CU...高效视频编码HEVC(High Efficiency Video Coding)采用计算复杂度较高的率失真优化方法对编码单元CU(Coding Unit)划分进行判决,具有较高的时间复杂度,编码所需时间较长。为降低HEVC编码复杂度,加快编码速度,提出一种基于深度预测的CU快速划分算法。首先依据当前CU与周围相邻CU和参考帧中当前位置CU的深度相关性,预测当前CU的最优深度,然后使用相邻相关分割法或依据当前CU深度和预测深度的关系对当前CU进行递归划分。为减少预测带来的误判,在CU深度级别由2级到3级的划分中,使用率失真或百分比的方式进行二次判定。实验结果表明,该算法与原始的HEVC编码方法相比,在亮度峰值信噪比减小0.07 d B,编码比特率增加0.88%的情况下,整体编码单元划分时间缩短37.7%,具有较高的时间效率。展开更多
现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,...现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,然后基于HEVC去除空间相关性并完成量化编码的过程。基于NVIDIA Jetson TX1平台,设计并实现了CPU和GPU异构并行压缩处理系统。利用真实数据集对所设计算法和所实现平台进行了性能及可行性验证。实验结果表明:在相同压缩比下,与离散小波变换(DWT)+JPEG2000算法相比,该系统明显提升了重建精度,在峰值信噪比(PSNR)方面平均提高了1.36 d B;同时,相比CPU,在GPU中进行KLT计算也至多可缩短33%的运行时间。展开更多
文摘高效视频编码(high efficiency video coding,HEVC)相较于上一代编码标准H.264降低了约50%的比特率,但为了提高帧内预测的准确性,HEVC提出的35种预测模式导致计算量大幅增加,对软件和硬件实现均构成了挑战.针对该问题,在HEVC的基础上提出了一种依据图片纹理方向,结合预测模式之间的关联性来确定帧内预测模式的快速算法.实验结果表明,本算法与HEVC参考软件HM16.20相比,在BD-Rate损失仅为5.79%的情况下,节省46%以上的编码时间,显著降低了帧内预测模式决策的复杂度,便于在嵌入式系统等硬件资源有限的端侧实现算法落地.
文摘HEVC(High efficiency video coding)是新一代的视频编码标准,它仍然采用了与先前视频编码标准H.264/AVC一样的混合视频编码的基本框架,但在各个编码模块都进行了改进和革新。与H.264/AVC相比较,在相同视频质量和应用条件下HEVC的码率降低将近一半。本文对HEVC的关键技术进行综述,着重研究探讨了帧内和帧间预测技术的原理和实现过程。
文摘高效视频编码(High Efficiency Video Coding,HEVC)作为下一代新的视频编码标准,旨在有限网络带宽下传输高质量的网络视频。与现有的视频编码标准相比,高效视频编码具有更高的灵活性和压缩率。编码单元(Coding Unit,CU)是视频编码处理的基本单元,原有的算法通过四叉树递归获取最佳CU深度,在提高视频压缩性能的同时引入了较高的计算复杂度。针对该问题,提出了一种快速编码深度选择算法,该算法利用相邻CU的深度信息计算一个深度预测特征值,通过该特征值进行深度选择,以避免不必要的计算,降低计算复杂度。实验结果表明,该算法在保证视频压缩效果的同时有效降低了计算复杂度。
文摘针对高效视频编码(HEVC)帧内预测过程中的高计算复杂度问题,提出一种基于纹理特征的预测模式选择和编码单元划分的快速帧内预测算法。利用每一深度层纹理方向强度判断编码单元是否需要进行分割,并且减少候选模式数量。首先,在每一深度层编码单元上结合像素方差,以像素点为单位计算相应的纹理方向强度,确定其纹理复杂度并结合阈值策略预测最终划分深度;其次,比较垂直和水平方向强度关系及统计预测候选模式概率分布,以减少预测模式数量,确定最优候选模式子集,进一步降低编码复杂度。所提算法与平台HM15.0相比,编码时间平均节省51.997%,BDPSNR(Bjontegaard Delta Peak Signal-to-Noise Rate)仅降低0.059 d B,BDBR(Bjontegaard Delta Bit Rate)仅上升了1.018%。实验数据表明,在保证信噪比和比特率基本不变的同时,所提算法能有效降低编码复杂度,利于HEVC的实时视频应用。
文摘高效视频编码(high efficiency video coding,HEVC)帧间预测方法相比于其他视频编码标准具有更高的编码效率,但同时也带来了更高的编码复杂度.为了加速HEVC帧间预测过程,提出了一种快速帧间预测算法.该算法首先判断当前编码单元(coding unit,CU)的运动特征,然后根据不同的运动特征采取不同的优化措施以减少帧间预测时间.基于HEVC校验模型(HM6.0)的实验结果表明,该算法在基本保持传统算法性能的基础上,编码时间平均可减少53.33%.
文摘高效视频编码HEVC(High Efficiency Video Coding)采用计算复杂度较高的率失真优化方法对编码单元CU(Coding Unit)划分进行判决,具有较高的时间复杂度,编码所需时间较长。为降低HEVC编码复杂度,加快编码速度,提出一种基于深度预测的CU快速划分算法。首先依据当前CU与周围相邻CU和参考帧中当前位置CU的深度相关性,预测当前CU的最优深度,然后使用相邻相关分割法或依据当前CU深度和预测深度的关系对当前CU进行递归划分。为减少预测带来的误判,在CU深度级别由2级到3级的划分中,使用率失真或百分比的方式进行二次判定。实验结果表明,该算法与原始的HEVC编码方法相比,在亮度峰值信噪比减小0.07 d B,编码比特率增加0.88%的情况下,整体编码单元划分时间缩短37.7%,具有较高的时间效率。
文摘现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,然后基于HEVC去除空间相关性并完成量化编码的过程。基于NVIDIA Jetson TX1平台,设计并实现了CPU和GPU异构并行压缩处理系统。利用真实数据集对所设计算法和所实现平台进行了性能及可行性验证。实验结果表明:在相同压缩比下,与离散小波变换(DWT)+JPEG2000算法相比,该系统明显提升了重建精度,在峰值信噪比(PSNR)方面平均提高了1.36 d B;同时,相比CPU,在GPU中进行KLT计算也至多可缩短33%的运行时间。