期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
1
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth
2
作者 Yu-long Liu Ting-yu Zhu +5 位作者 Qin Wang Zi-jie Huang De-xiang Sun Jing-hui Yang Xiao-dong Qi Yong Wang 《Nano-Micro Letters》 2025年第4期399-418,共20页
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal... As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields. 展开更多
关键词 Polypyrrole nanowire arrays Hierarchical foam HYDROPHOBICITY Infrared stealth Electromagnetic interference shielding
在线阅读 下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption 被引量:4
3
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption Hierarchical structure In situ growth Self-reduction
在线阅读 下载PDF
Enhancing Low-Frequency Microwave Absorption Through Structural Polarization Modulation of MXenes 被引量:3
4
作者 Bo Shan Yang Wang +1 位作者 Xinyi Ji Yi Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期435-452,共18页
Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over pol... Two-dimensional carbon-based materials have shown promising electromagnetic wave absorption capabilities in mid-and high-frequency ranges,but face challenges in low-frequency absorption due to limited control over polarization response mecha-nisms and ambiguous resonance behavior.In this study,we pro-pose a novel approach to enhance absorption efficiency in aligned three-dimensional(3D)MXene/CNF(cellulose nanofibers)cavities by modifying polarization properties and manipulating resonance response in the 3D MXene architecture.This controlled polarization mechanism results in a significant shift of the main absorption region from the X-band to the S-band,leading to a remarkable reflection loss value of-47.9 dB in the low-frequency range.Furthermore,our findings revealed the importance of the oriented electromagnetic coupling in influencing electromagnetic response and microwave absorption properties.The present study inspired us to develop a generic strategy for low-frequency tuned absorption in the absence of magnetic element participation,while orientation-induced polarization and the derived magnetic resonance coupling are the key controlling factors of the method. 展开更多
关键词 Hierarchical structure MXene Microwave absorption LOW-FREQUENCY
在线阅读 下载PDF
Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors 被引量:2
5
作者 Shani Li Yanan Xu +7 位作者 Wenhao Liu Xudong Zhang Yibo Ma Qifan Peng Xiong Zhang Xianzhong Sun Kai Wang Yanwei Ma 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期573-583,共11页
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ... Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance. 展开更多
关键词 Hierarchical carbon framework NANOCAGE ZIF GRAPHENE Lithium-ion capacitors
在线阅读 下载PDF
Kinetic-Thermodynamic Promotion Engineering toward High-Density Hierarchical and Zn-Doping Activity-Enhancing ZnNiO@CF for High-Capacity Desalination 被引量:2
6
作者 Jie Ma Siyang Xing +2 位作者 Yabo Wang Jinhu Yang Fei Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期35-50,共16页
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,... Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes. 展开更多
关键词 Zinc-nickel metal oxide High-density hierarchical Capacitive deionization Zinc-doping
在线阅读 下载PDF
Universal architecture and defect engineering dual strategy for hierarchical antimony phosphate composite toward fast and durable sodium storage 被引量:1
7
作者 Jiawei Wu Gaoyu Wang +7 位作者 Wei Zhang Lixiang Wang Jian Peng Qinghua Li Zhixin Liang Wenbo Fan Jiazhao Wang Shaoming Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期110-119,I0004,共11页
Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume di... Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume distortion,structural collapse,and ionic conduction interruption upon cycling.Herein,a hierarchical array-like nanofiber structure was designed to address these limitations by combining architecture engineering and anion tuning strategy,in which SbPO_(4-x) with oxygen vacancy nanosheet arrays are anchored on the surface of interwoven carbon nanofibers(SbPO_(4-x)@CNFs).In particular,bulky PO_(4)^(3-) anions mitigate the large volume distortion and generate Na_(3)PO_(4) with high ionic conductivity,collectively improving cyclic stability and ionic transport efficiency.The abundant oxygen vacancies substantially boost the intrinsic electronic conductivity of SbPO_4,further accelerating the reaction dynamics.In addition,hierarchical fibrous structures provide abundant active sites,construct efficient conducting networks,and enhance the electron/ion transport capacity.Benefiting from the advanced structural design,the SbPO_(4-x)@CNFs electrodes exhibit outstanding cycling stability(1000 cycles at 1.0 A g^(-1) with capacity decay of 0.05% per cycle) and rapid sodium storage performance(293.8 mA h g^(-1) at 5.0 A g^(-1)).Importantly,systematic in-/ex-situ techniques have revealed the "multi-step conversion-alloying" reaction process and the "battery-capacitor dual-mode" sodium-storage mechanism.This work provides valuable insights into the design of anode materials for advanced SIBs with elevated stability and superior rate performance. 展开更多
关键词 SbPO_(4) anodes Hierarchical nanostructures Oxygen vacancy Stress dispersion Sodium-ion batteries
在线阅读 下载PDF
Grapevine-like high entropy oxide composites boost high-performance lithium sulfur batteries as bifunctional interlayers 被引量:1
8
作者 Huarong Fan Yubing Si +3 位作者 Yiming Zhang Fulong Zhu Xin Wang Yongzhu Fu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期565-572,共8页
Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reactio... Lithium-sulfur batteries(LSBs)with high energy densities have been demonstrated the potential for energy-intensive demand applications.However,their commercial applicability is hampered by hysteretic electrode reaction kinetics and the shuttle effect of lithium polysulfides(LiPSs).In this work,an interlayer consisting of high-entropy metal oxide(Cu_(0.7)Fe_(0.6)Mn_(0.4)Ni_(0.6)Sn_(0.5))O_(4) grown on carbon nanofibers(HEO/CNFs)is designed for LSBs.The CNFs with highly porous networks provide transport pathways for Li^(+) and e^(-),as well as a physical sieve effect to limit LiPSs crossover.In particular,the grapevine-like HEO nanoparticles generate metal-sulfur bonds with LiPSs,efficiently anchoring active materials.The unique structure and function of the interlayer enable the LSBs with superior electrochemical performance,i.e.,the high specific capacity of 1381 mAh g^(-1) at 0.1 C and 561 mAh g^(-1) at 6 C.This work presents a facile strategy for exploiting high-performance LSBs. 展开更多
关键词 Electrospun carbon nanofibers Grapevine-like morphology Hierarchical physical sieve effect High-entropy induced chemisorption Lithium-sulfur battery
在线阅读 下载PDF
Engineering hierarchical quaternary superstructure of an integrated MOF-derived electrode for boosting urea electrooxidation assisted water electrolysis 被引量:1
9
作者 Jianjun Tian Changsheng Cao +3 位作者 Yingchun He Muhammad Imran Khan Xin-Tao Wu Qi-Long Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期695-701,共7页
Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierar... Controllable design of the catalytic electrodes with hierarchical superstructures is expected to improve their electrochemical performance.Herein,a self-supported integrated electrode(NiCo-ZLDH/NF)with a unique hierarchical quaternary superstructure was fabricated through a self-sacrificing template strategy from the metal–organic framework(Co-ZIF-67)nanoplate arrays,which features an intriguing well-defined hierarchy when taking the unit cells of the NiCo-based layered double hydroxide(NiCo-LDH)as the primary structure,the ultrathin LDH nanoneedles as the secondary structure,the mesoscale hollow plates of the LDH nanoneedle arrays as the tertiary structure,and the macroscale three-dimensional frames of the plate arrays as the quaternary structure.Notably,the distinctive structure of NiCo-ZLDH/NF can not only accelerate both mass and charge transfer,but also expose plentiful accessible active sites with high intrinsic activity,endowing it with an excellent electrochemical performance for urea oxidation reaction(UOR).Specially,it only required the low potentials of 1.335,1.368 and 1.388 V to deliver the current densities of 10,100 and 200 mA cm^(-2),respectively,much superior to those for typical NiCo-LDH.Employing NiCo-ZLDH/NF as the bifunctional electrode for both anodic UOR and cathodic HER,an energy-saving electrolysis system was further explored which can greatly reduce the needed voltage of 213 mV to deliver the current density of 100 mA cm^(-2),as compared to the conventional water electrolysis system composed of OER.This work manifests that it is prospective to explore the hierarchically nanostructured electrodes and the innovative electrolytic technologies for high-efficiency electrocatalysis. 展开更多
关键词 Hierarchical superstructures Metal–organic frameworks Layered double hydroxides Urea oxidation reaction Hydrogen evolution reaction
在线阅读 下载PDF
Studies of an event-building algorithm of the readout system for the twin TPCs in HFRS
10
作者 Jing Tian Zhi-Peng Sun +4 位作者 Song-Bo Chang Yi Qian Hong-Yun Zhao Zheng-Guo Hu Xi-Meng Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期82-95,共14页
The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are dist... The High-energy Fragment Separator(HFRS),which is currently under construction,is a leading international radioactive beam device.Multiple sets of position-sensitive twin time projection chamber(TPC)detectors are distributed on HFRS for particle identification and beam monitoring.The twin TPCs'readout electronics system operates in a trigger-less mode due to its high counting rate,leading to a challenge of handling large amounts of data.To address this problem,we introduced an event-building algorithm.This algorithm employs a hierarchical processing strategy to compress data during transmission and aggregation.In addition,it reconstructs twin TPCs'events online and stores only the reconstructed particle information,which significantly reduces the burden on data transmission and storage resources.Simulation studies demonstrated that the algorithm accurately matches twin TPCs'events and reduces more than 98%of the data volume at a counting rate of 500 kHz/channel. 展开更多
关键词 High counting rate Twin TPCs Trigger-less Readout electronics Event building Hierarchical data processing
在线阅读 下载PDF
Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets
11
作者 Shuo Xu Yuefu Zhang +1 位作者 Xin An Sainan Pi 《Journal of Data and Information Science》 CSCD 2024年第2期81-103,共23页
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t... Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. 展开更多
关键词 Multi-label classification Real-World datasets Hierarchical structure Classification system Label correlation Machine learning
在线阅读 下载PDF
Synchronous organic-inorganic co-intercalated ammonium vanadate cathode for advanced aqueous zinc-ion batteries
12
作者 Wenpei Kang Bingchen Zhang +8 位作者 Zhurui Wang Zhengchunyu Zhang Mang Niu Xuguang An Zhenkai Mou Xiaoyu Fan Xuqiang Hu Baojuan Xi Shenglin Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期608-617,共10页
Vanadium-based cathode materials are attractive for aqueous zinc-ion batteries(AZIBs)owing to the high capacity from their open frameworks and multiple valences.However,the cycle stability and rate capability are stil... Vanadium-based cathode materials are attractive for aqueous zinc-ion batteries(AZIBs)owing to the high capacity from their open frameworks and multiple valences.However,the cycle stability and rate capability are still restricted by the low electrical conductivity and trapped diffusion kinetics.Here,we propose an organic-inorganic co-intercalation strategy to regulate the structure of ammonium vanadate(NH_(4)V_(4)O_(10),NVO).The introduction of Al^(3+)and polyaniline(PANI)induces the optimized layered structure and generation of urchin-like hierarchical construction(AP-NVO),based on heterogeneous nucleation and dissolution-recrystallization growth mechanism.Owing to these favorable features,the AP-NVO electrode delivers a desirable discharge capacity of 386 mA h g^(-1) at 1.0 A g^(-1),high-rate capability of 263 mA h g^(-1 )at 5.0 A g^(-1) and excellent cycling stability with 80.4%capacity retention over 2000 cycles at 5.0 A g^(-1).Such satisfactory electrochemical performance is believed to result from the enhanced reaction kinetics provided by the stable layered structure and a high intercalation pseudo-capacitance reaction.These results could provide enlightening insights into the design of layered vanadium oxide cathodematerials. 展开更多
关键词 Ammonium vanadate bronze Co-pre-intercalation Urchin-like hierarchical structure Aqueous zinc-ion batteries
在线阅读 下载PDF
Kinetic-boosted CO_(2) electroreduction to formate via synergistic electric-thermal field on hierarchical bismuth with amorphous layer
13
作者 Bing Yang Junyi Zeng +4 位作者 Zhenlin Zhang Lin Meng Donglin Shi Liang Chen Youju Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期233-243,I0007,共12页
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w... Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts. 展开更多
关键词 CO_(2) electroreduction Hierarchical bismuth Amorphous layer Electric-thermal field Kinetic-boosting
在线阅读 下载PDF
A hierarchical salt-rejection strategy for sustainable and high-efficiency solar-driven desalination
14
作者 Zhengyi Mao Xuliang Chen +7 位作者 Yingxian Chen Junda Shen Jianpan Huang Yuhan Chen Xiaoguang Duan Yicheng Han Kannie Wai Yan Chan Jian LU 《Nano Materials Science》 EI CAS CSCD 2024年第1期38-43,共6页
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim... Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications. 展开更多
关键词 Solar water evaporation 3D printing Salt-rejection Hierarchical structures High efficiency
在线阅读 下载PDF
Integrated adsorption and photocatalytic removal of methylene blue dye from aqueous solution by hierarchical Nb_(2)O_(5)@PAN/PVDF/ANO composite nanofibers
15
作者 Aditya Rianjanu Kurniawan Deny Pratama Marpaung +8 位作者 Elisabeth Kartini Arum Melati Rizky Aflaha Yudha Gusti Wibowo I Putu Mahendra Nursidik Yulianto Januar Widakdo Kuwat Triyana Hutomo Suryo Wasisto Tarmizi Taher 《Nano Materials Science》 EI CAS CSCD 2024年第1期96-105,共10页
This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueo... This work presents the development of hierarchical niobium pentoxide(Nb_(2)O_(5))-based composite nanofiber membranes for integrated adsorption and photocatalytic degradation of methylene blue(MB)pollutants from aqueous solutions.The Nb_(2)O_(5) nanorods were vertically grown using a hydrothermal process on a base electrospun nanofibrous membrane made of polyacrylonitrile/polyvinylidene fluoride/ammonium niobate(V)oxalate hydrate(Nb_(2)O_(5)@PAN/PVDF/ANO).They were characterized using field-emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD)analysis,and Fourier transform infrared(FTIR)spectroscopy.These composite nanofibers possessed a narrow optical bandgap energy of 3.31 eV and demonstrated an MB degradation efficiency of 96%after 480 min contact time.The pseudo-first-order kinetic study was also conducted,in which Nb_(2)O_(5)@PAN/PVDF/ANO nanofibers have kinetic constant values of 1.29×10^(-2) min^(-1) and 0.30×10^(-2) min^(-1) for adsorption and photocatalytic degradation of MB aqueous solutions,respectively.These values are 17.7 and 7.8 times greater than those of PAN/PVDF/ANO nanofibers without Nb_(2)O_(5) nanostructures.Besides their outstanding photocatalytic performance,the developed membrane materials exhibit advantageous characteristics in recycling,which subsequently widen their practical use in environmental remediation applications. 展开更多
关键词 Hierarchical nanostructure Composite nanofiber Niobium pentoxide Dye degradation Synergetic adsorption and photocatalysis
在线阅读 下载PDF
Verifying hierarchical network nonlocality in general quantum networks
16
作者 杨舒媛 侯晋川 贺衎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期199-208,共10页
Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full networ... Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks. 展开更多
关键词 full network nonlocality hierarchical network nonlocality tree network
在线阅读 下载PDF
A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
17
作者 张哲祎 牟俊 +1 位作者 Santo Banerjee 曹颖鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期228-237,共10页
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi... Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works. 展开更多
关键词 chaotic hierarchical encryption multi-medical image encryption differentiated visual effects row-column confusion closed-loop bi-directional diffusion transform domain watermark embedding
在线阅读 下载PDF
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption
18
作者 Kuan Liang Weibiao Guo +8 位作者 Linmei Li Huidong Cai Haiqi Zhang Jingjing Li Feng Xu Jian Yan Daofei Lv Hongxia Xi Chongxiong Duan 《Nano Materials Science》 EI CAS CSCD 2024年第4期467-474,共8页
Nanoscale hierarchically porous metal-organic frameworks(NH-MOFs)synergistically combine the advantages of nanoscale MOFs and hierarchically porous MOFs,resulting in remarkable characteristics such as increased specif... Nanoscale hierarchically porous metal-organic frameworks(NH-MOFs)synergistically combine the advantages of nanoscale MOFs and hierarchically porous MOFs,resulting in remarkable characteristics such as increased specific surface area,greater porosity,and enhanced exposure of active sites.Herein,nanoscale hierarchically porous UIO-66(UIO-66_X)was synthesized using a defect-induced strategy that employed ethylene diamine tetraacetic acid(EDTA)as a modulator.The introduced EDTA occupies the coordination sites of organic ligands,promoting the formation and growth of UIO-66 crystal nuclei and inducing defects during synthesis.The as-synthesized UIO-66_X crystals exhibit a uniform distribution with an average size of approximately 100 nm.In addition,the total pore volume attains a remarkable value of 0.95 cm^(3)g^(-1),with mesopores constituting 36.8% of the structure.Furthermore,the porosities of UIO-66_X can be easily tuned by controlling the molar ratio of EDTA/Zr^(4+).In addition,the as-synthesized UIO-66_X exhibits excellent adsorption capacities for n-hexane(344 mg g^(-1))and pxylene(218 mg g^(-1)),which are 44.5% and 27.5% higher than those of conventional UIO-66,respectively.Finally,the adsorption behavior of n-hexane and p-xylene molecules in UIO-66_X was investigated using density functional theory simulations. 展开更多
关键词 Nanoscale hierarchically porous MOFs Tunable porosities Enhanced VOC adsorption
在线阅读 下载PDF
Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
19
作者 Minggang Xu Chong Li +1 位作者 Ying Chen Wu Wei 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期422-435,共14页
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ... Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance. 展开更多
关键词 automated pavement crack detection octave convolutional network hierarchical feature multiscale MULTIFREQUENCY
在线阅读 下载PDF
Hierarchical Federated Learning Architectures for the Metaverse
20
作者 GU Cheng LI Baochun 《ZTE Communications》 2024年第2期39-48,共10页
In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on traini... In the context of edge computing environments in general and the metaverse in particular,federated learning(FL)has emerged as a distributed machine learning paradigm that allows multiple users to collaborate on training a shared machine learning model locally,eliminating the need for uploading raw data to a central server.It is perhaps the only training paradigm that preserves the privacy of user data,which is essential for computing environments as personal as the metaverse.However,the original FL architecture proposed is not scalable to a large number of user devices in the metaverse community.To mitigate this problem,hierarchical federated learning(HFL)has been introduced as a general distributed learning paradigm,inspiring a number of research works.In this paper,we present several types of HFL architectures,with a special focus on the three-layer client-edge-cloud HFL architecture,which is most pertinent to the metaverse due to its delay-sensitive nature.We also examine works that take advantage of the natural layered organization of three-layer client-edge-cloud HFL to tackle some of the most challenging problems in FL within the metaverse.Finally,we outline some future research directions of HFL in the metaverse. 展开更多
关键词 federated learning hierarchical federated learning metaverse
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部