期刊文献+
共找到3,969篇文章
< 1 2 199 >
每页显示 20 50 100
An optimal scheduling algorithm based on task duplication 被引量:2
1
作者 RuanYoulin LiuCan ZhuGuangxi LuXiaofeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期445-450,共6页
When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and ... When the communication time is relatively shorter than the computation time for every task, the task duplication based scheduling (TDS) algorithm proposed by Darbha and Agrawal generates an optimal schedule. Park and Choe also proposed an extended TDS algorithm whose optimality condition is less restricted than that of TDS algorithm, but the condition is very complex and is difficult to satisfy when the number of tasks is large. An efficient algorithm is proposed whose optimality condition is less restricted and simpler than both of the algorithms, and the schedule length is also shorter than both of the algorithms. The time complexity of the proposed algorithm is O(v2), where v represents the number of tasks. 展开更多
关键词 optimal scheduling algorithm task duplication optimality condition.
在线阅读 下载PDF
Multi-network-region traffic cooperative scheduling in large-scale LEO satellite networks 被引量:1
2
作者 LI Chengxi WANG Fu +8 位作者 YAN Wei CUI Yansong FAN Xiaodong ZHU Guangyu XIE Yanxi YANG Lixin ZHOU Luming ZHAO Ran WANG Ning 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期829-841,共13页
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea... A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%. 展开更多
关键词 low-Earth-orbit(LEO)satellite network satellite communication load balance multi-region scheduling latency optimization
在线阅读 下载PDF
Hybrid ant colony optimization for the resource-constrained project scheduling problem 被引量:10
3
作者 Linyi Deng Yan Lin Ming Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期67-71,共5页
To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extend... To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently. 展开更多
关键词 project scheduling double justification ant colony optimization activity splitting.
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 MULTI-OBJECTIVE WORKFLOW scheduling multi-swarm optimIZATION particle SWARM optimIZATION (PSO) CLOUD computing system
在线阅读 下载PDF
Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization 被引量:4
5
作者 Jianjun Qi Bo Guo +1 位作者 Hongtao Lei Tao Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期69-76,共8页
This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations amo... This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP. 展开更多
关键词 project scheduling resource availability cost problem(RACP) HEURISTICS particle swarm optimization (PSO) path relin-king.
在线阅读 下载PDF
Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition 被引量:10
6
作者 Aijun Liu Michele Pfund John Fowler 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期422-433,共12页
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca... How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study. 展开更多
关键词 integrated manufacturing system optimization task decomposition task scheduling
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
7
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
8
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
9
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
10
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition (MODE/D) Pareto-optimal front
在线阅读 下载PDF
A discrete multi-swarm optimizer for radio frequency identification network scheduling 被引量:1
11
作者 陈瀚宁 朱云龙 《Journal of Central South University》 SCIE EI CAS 2014年第1期199-212,共14页
Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems ofte... Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology. 展开更多
关键词 reader interference RFID network scheduling pS2O swarm intelligence discrete optimization
在线阅读 下载PDF
Mid-long Term Optimal Dispatching Method of Hydro-thermal Power System Considering Scheduled Maintenance 被引量:11
12
作者 GE Xiaolin SHU Jun ZHANG Lizi 《中国电机工程学报》 EI CSCD 北大核心 2012年第13期I0006-I0006,189,共1页
在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景... 在中长期水火发电调度中考虑检修计划的影响是目前中长期水火发电调度面临的难题。利用现代整数代数建模技术,建立发电计划和检修计划协调优化的多场景调度模型。在该模型中,鉴于设备检修计划的连续性,在预测场景树的基础上,将场景节点划分成不同的场景,通过节点和场景关联矩阵,实现多场景下设备检修模型的构建。同时,鉴于中长期调度计划中发电计划和检修计划对时段间隔要求的不同,分别设置电量相关节点和电力相关节点,实现中长期发电计划和检修计划的协调。上述模型是一个大规模混合整数线性规划(mixed integer linear programming,MILP)问题,采用商用MILP求解器进行求解。大规模实际水火电系统的实例分析结果表明,所提模型和方法是可行、有效的。 展开更多
关键词 长期优化调度 定期维护 发电系统 水热 电热 能源平衡 建模方法 场景模型
在线阅读 下载PDF
An Optimal Method to Schedule Dynamic Maintenance Task with Subject Taken into Account
13
作者 王正元 严小琴 +1 位作者 朱昱 宋建社 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第2期155-160,共6页
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fas... The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid. 展开更多
关键词 military operation research maintenance scheduling optimal model
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
14
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
在线阅读 下载PDF
An integer multi-objective optimization model and an enhanced non-dominated sorting genetic algorithm for contraflow scheduling problem
15
作者 李沛恒 楼颖燕 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2399-2405,共7页
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor... To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity. 展开更多
关键词 hurricane evacuation contraflow scheduling multi-objective optimization NSGA-II
在线阅读 下载PDF
Autonomous UAV 3D trajectory optimization and transmission scheduling for sensor data collection on uneven terrains
16
作者 Andrey V.Savkin Satish C.Verma Wei Ni 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期154-160,共7页
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha... This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Unmanned aerial system UAS Unmanned aerial vehicle UAV Wireless sensor networks UAS-Assisted data collection 3D trajectory optimization Data transmission scheduling
在线阅读 下载PDF
Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks 被引量:23
17
作者 Guohua Wu Manhao Ma +1 位作者 Jianghan Zhu Dishan Qiu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期723-733,共11页
Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance... Satellite observation scheduling plays a significant role in improving the efficiency of satellite observation systems.Although many scheduling algorithms have been proposed,emergency tasks,characterized as importance and urgency(e.g.,observation tasks orienting to the earthquake area and military conflict area),have not been taken into account yet.Therefore,it is crucial to investigate the satellite integrated scheduling methods,which focus on meeting the requirements of emergency tasks while maximizing the profit of common tasks.Firstly,a pretreatment approach is proposed,which eliminates conflicts among emergency tasks and allocates all tasks with a potential time-window to related orbits of satellites.Secondly,a mathematical model and an acyclic directed graph model are constructed.Thirdly,a hybrid ant colony optimization method mixed with iteration local search(ACO-ILS) is established to solve the problem.Moreover,to guarantee all solutions satisfying the emergency task requirement constraints,a constraint repair method is presented.Extensive experimental simulations show that the proposed integrated scheduling method is superior to two-phased scheduling methods,the performance of ACO-ILS is greatly improved in both evolution speed and solution quality by iteration local search,and ACO-ILS outperforms both genetic algorithm and simulated annealing algorithm. 展开更多
关键词 satellite scheduling emergency task ant colony optimization(ACO) iteration local search(ILS) acyclic directed graph model
在线阅读 下载PDF
Hybrid heuristic algorithm for multi-objective scheduling problem 被引量:3
18
作者 PENG Jian'gang LIU Mingzhou +1 位作者 ZHANG Xi LING Lin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期327-342,共16页
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object... This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP. 展开更多
关键词 flexible JOB-SHOP scheduling HARMONY SEARCH (HS) algorithm PARETO optimalITY opposition-based learning
在线阅读 下载PDF
Robust single machine scheduling problem with uncertain job due dates for industrial mass production 被引量:4
19
作者 YUE Fan SONG Shiji +2 位作者 JIA Peng WU Guangping ZHAO Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期350-358,共9页
The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust opt... The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust optimization model by minimizing the maximum tardiness in the worst case scenario over all jobs. Unlike the traditional stochastic programming model which requires exact distributions, our model only needs the information of due date intervals. The worst case scenario for a given sequence that belongs to a set containing only n scenarios is proved, where n is the number of jobs. Then, the model is simplified and reformulated as an equivalent mixed 0-1 integer linear programming(MILP) problem. To solve the MILP problems efficiently, a heuristic approach is proposed based on a robust dominance rule. The experimental results show that the proposed method has the advantages of robustness and high calculating efficiency, and it is feasible for large-scale problems. 展开更多
关键词 ROBUST optimization single machine scheduling maximum TARDINESS UNCERTAIN DUE DATE
在线阅读 下载PDF
Sensor scheduling for ground maneuvering target tracking in presence of detection blind zone 被引量:11
20
作者 XU Gongguo SHAN Ganlin DUAN Xiusheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期692-702,共11页
Continuous and stable tracking of the ground maneuvering target is a challenging problem due to the complex terrain and high clutter. A collaborative tracking method of the multisensor network is presented for the gro... Continuous and stable tracking of the ground maneuvering target is a challenging problem due to the complex terrain and high clutter. A collaborative tracking method of the multisensor network is presented for the ground maneuvering target in the presence of the detection blind zone(DBZ). First, the sensor scheduling process is modeled within the partially observable Markov decision process(POMDP) framework. To evaluate the target tracking accuracy of the sensor, the Fisher information is applied to constructing the reward function. The key of the proposed scheduling method is forecasting and early decisionmaking. Thus, an approximate method based on unscented sampling is presented to estimate the target state and the multi-step scheduling reward over the prediction time horizon. Moreover, the problem is converted into a nonlinear optimization problem, and a fast search algorithm is given to solve the sensor scheduling scheme quickly. Simulation results demonstrate the proposed nonmyopic scheduling method(Non-MSM) has a better target tracking accuracy compared with traditional methods. 展开更多
关键词 sensor scheduling ground maneuvering target detection blind zone(DBZ) decision tree optimization
在线阅读 下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部