Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain an...Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.展开更多
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi...In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
基金supported by the National Natural Science Foundation of China(7157105771390522)the Key Lab for Public Engineering Audit of Jiangsu Province,Nanjing Audit University(GGSS2016-08)
文摘Different from the organization structure of complex projects in Western countries, the Liang Zong hierarchical organization structure of complex projects in China has two different chains, the chief-engineer chain and the general-director chain,to handle the trade-off between technical and management decisions. However, previous works on organization search have mainly focused on the single-chain hierarchical organization in which all decisions are regarded as homogeneous. The heterogeneity and the interdependency between technical decisions and management decisions have been neglected. A two-chain hierarchical organization structure mapped from a real complex project is constructed. Then, a discrete decision model for a Liang Zong two-chain hierarchical organization in an NK model framework is proposed. This model proves that this kind of organization structure can reduce the search space by a large amount and that the search process should reach a final stable state more quickly. For a more complicated decision mechanism, a multi-agent simulation based on the above NK model is used to explore the effect of the two-chain organization structure on the speed, stability, and performance of the search process. The results provide three insights into how, compared with the single-chain hierarchical organization, the two-chain organization can improve the search process: it can reduce the number of iterations efficiently; the search is more stable because the search space is a smoother hill-like fitness landscape; in general, the search performance can be improved.However, when the organization structure is very complicated, the performance of a two-chain organization is inferior to that of a single-chain organization. These findings about the efficiency of the unique Chinese-style organization structure can be used to guide organization design for complex projects.
基金Supported by the National Natural Science Foundation of China(61601176)。
文摘In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.